Spaces:
Sleeping
Sleeping
import numpy as np | |
from PIL import Image | |
from transformers import ViltConfig, ViltProcessor, ViltForQuestionAnswering | |
import cv2 | |
import streamlit as st | |
st.title("Live demo of multimodal vqa") | |
config = ViltConfig.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
model = ViltForQuestionAnswering.from_pretrained("Minqin/carets_vqa_finetuned") | |
uploaded_file = st.file_uploader("Please upload one image (jpg)", type="jpg") | |
question = st.text_input("Type here one question on the image") | |
if uploaded_file is not None: | |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) | |
opencv_img = cv2.imdecode(file_bytes, 1) | |
image_cv2 = cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB) | |
st.image(image_cv2, channels="RGB") | |
img = Image.fromarray(image_cv2) | |
encoding = processor(images=img, text=question, return_tensors="pt") | |
outputs = model(**encoding) | |
logits = outputs.logits | |
idx = logits.argmax(-1).item() | |
pred = model.config.id2label[idx] | |
st.text(f"Answer: {pred}") | |