Minerva143's picture
First commit. Files added
3e2d3d3 verified
raw
history blame
9.04 kB
import streamlit as st
import pandas as pd
import altair as alt
import numpy as np
from PIL import Image
import pickle
with open('best_model_hypertension.pkl', 'rb') as file:
hypertension_model = pickle.load(file)
with open('hypertension_scaler.pkl', 'rb') as file:
hypertension_scaler = pickle.load(file)
with open('best_model_stroke.pkl', 'rb') as file:
stroke_model = pickle.load(file)
with open('stroke_scaler.pkl', 'rb') as file:
stroke_scaler = pickle.load(file)
with open('best_model_diabetes.pkl', 'rb') as file:
diabetes_model = pickle.load(file)
with open('diabetes_scaler.pkl', 'rb') as file:
diabetes_scaler = pickle.load(file)
with open('best_model_heart.pkl', 'rb') as file:
heart_model = pickle.load(file)
with open('best_scaler_heart.pkl', 'rb') as file:
heart_scaler = pickle.load(file)
#Create header
st.write("""# Heart Attack Risk Predictor""")
st.write("""## How it works""")
st.write("view your predictions about your health condition based on your answers to the questions on the side panel.")
#image
st.write("""## Training Flow Diagram""")
image = Image.open('Train_diag.png')
st.image(image)
st.write("""## Prediction Flow Diagram""")
image = Image.open('Test_diag_v2.png')
st.image(image)
#links
st.write("""## Dataset links""")
st.write("https://www.kaggle.com/datasets/prosperchuks/health-dataset?select=diabetes_data.csv")
st.write("https://www.kaggle.com/datasets/iamsouravbanerjee/heart-attack-prediction-dataset")
# model types
st.write("""## Trained Model Types""")
st.write("Hypertension: ")
st.write("Stroke: ")
st.write("Diabetes: ")
st.write("Heart Attack: ")
#Bring in the data
data = pd.read_csv('heart_attack_prediction_dataset.csv')
st.write("## HEART ATTACK TRAIN DATA")
st.dataframe(data)
#Create and name sidebar
st.sidebar.header('Fill your survey')
st.sidebar.write("""#### Choose your values""")
def user_input_features():
age = st.sidebar.slider('Age', 18, 100, 25, 1)
sex = st.sidebar.slider('Sex (Male : 0, Female : 1)', 0, 1, 0, 1)
gen_health = st.sidebar.slider('General Health scale 1 = excellent ,2 = very good, 3 = good, 4 = fair, 5 = poor', 1, 5, 3, 1)
men_health = st.sidebar.slider('days of poor mental health scale 1-30 days', 0, 30, 0, 1)
cholesterol = st.sidebar.slider('Cholesterol level', 0, 600, 150, 5)
heart_rate = st.sidebar.slider('Heart Rate', 0, 160, 60, 1)
family_history = st.sidebar.slider('Family History(for heart attack). 0 = no,1 = yes', 0, 1, 0, 1)
obesity = st.sidebar.slider('Obesity. 0 = no,1 = yes', 0, 1, 0, 1)
alcohol_consumption = st.sidebar.slider('Alcohol Consumption(regularly).0 = no,1 = yes', 0, 1, 0, 1)
smoking_status = st.sidebar.slider('Smoking(regularly).0 = no,1 = yes', 0, 1, 0, 1)
exercise_hours = st.sidebar.slider('Exercise Hours Per Week', 0, 50, 15, 1)
stress_level = st.sidebar.slider('Stress Level', 0, 10, 3, 1)
sedentary_hours = st.sidebar.slider('Sedentary Hours Per Day', 0.0, 12.0, 6.0, 0.5)
income = st.sidebar.slider('Income', 0, 500000, 0, 1000)
education_level = st.sidebar.slider('Education level 1-10', 1, 10, 6, 1)
bmi = st.sidebar.slider('BMI', 0.0, 50.0, 20.0, 0.1)
triglycerides = st.sidebar.slider('Triglycerides Level', 0, 1000, 350, 10)
physical_days = st.sidebar.slider('Physical Activity Days Per Week', 0, 7, 3, 1)
sleep_hours = st.sidebar.slider('Sleep Hours Per Day', 0.0, 16.0, 8.0, 0.5)
systolic = st.sidebar.slider('Blood Pressure (Systolic)', 0, 200, 140, 1)
diastolic = st.sidebar.slider('Blood Pressure (Diastolic)', 0, 120, 80, 1)
diff_walk = st.sidebar.slider('Do you have serious difficulty walking or climbing stairs? 0 = no 1 = yes', 0, 1, 0, 1)
fruits = st.sidebar.slider('Consume Fruit 1 or more times per day. 0 = no,1 = yes', 0, 1, 0, 1)
veggies = st.sidebar.slider('Consume Vegetables 1 or more times per day. 0 = no ,1 = yes', 0, 1, 0, 1)
married = st.sidebar.slider('Ever Married. 0 = no,1 = yes', 0, 1, 0, 1)
work_type = st.sidebar.slider('patient job type: 0 - Never_worked, 1 - children, 2 - Govt_job, 3 - Self-employed, 4 - Private', 0, 4, 0, 1)
avg_glucose_level = st.sidebar.slider('Avg. glucose level', 0, 300, 100, 5)
cp = st.sidebar.slider('Chest pain type: 0: asymptomatic 1: typical angina 2: atypical angina 3: non-anginal pain', 0, 3, 0, 1)
trestbps = st.sidebar.slider('Resting blood pressure', 50, 250, 120, 1)
thalach = st.sidebar.slider('Maximum heart rate achieved', 50, 250, 120, 1)
exang = st.sidebar.slider('Exercise induced angina. 0 = no,1 = yes', 0, 1, 0, 1)
oldpeak = st.sidebar.slider('ST depression induced by exercise relative to rest.', 0.0, 10.0, 0.0, 0.1)
slope = st.sidebar.slider('The slope of the peak exercise ST segment: 0: upsloping 1: flat 2: downsloping', 0, 2, 2, 1)
ca = st.sidebar.slider('Number of major vessels (0–3) colored by flourosopy', 0, 5, 0, 1)
thal = st.sidebar.slider('3: Normal; 6: Fixed defect; 7: Reversable defect', 0, 10, 2, 1)
user_data_hypertension = {
'cp' : cp,
'trestbps' : trestbps,
'chol' : cholesterol,
'thalach' : thalach,
'exang' : exang,
'oldpeak' : oldpeak,
'slope' : slope,
'ca' : ca,
'thal' : thal,
}
features_hypertension = pd.DataFrame(user_data_hypertension, index=[0])
features_hypertension_scaled = hypertension_scaler.transform(features_hypertension)
pred_hypertension = hypertension_model.predict(features_hypertension_scaled)
user_data_stroke = {
'age' : age,
'hypertension' : pred_hypertension[0],
'heart_disease' : 0,
'ever_married' : married,
'work_type' : work_type,
'avg_glucose_level' : avg_glucose_level,
'bmi' : bmi,
'smoking_status' : smoking_status
}
features_stroke = pd.DataFrame(user_data_stroke, index=[0])
features_stroke_scaled = stroke_scaler.transform(features_stroke)
pred_stroke = stroke_model.predict(features_stroke_scaled)
if physical_days > 2:
PhysHlth = 1
else:
PhysHlth = 0
if exercise_hours > 8:
PhysActivity = 1
else:
PhysActivity = 0
age_level = ((age -18) // 5 ) + 1
income_level = (income // 50000 ) + 1
user_data_diabetes = {
'HighBP': pred_hypertension[0],
'BMI': bmi,
'Stroke': pred_stroke[0],
'PhysActivity': PhysActivity,
'Fruits': fruits,
'Veggies': veggies,
'HvyAlcoholConsump': alcohol_consumption,
'GenHlth': gen_health,
'MentHlth': men_health,
'PhysHlth': PhysHlth,
'DiffWalk': diff_walk,
'Sex': 1 - sex,
'Age': age_level,
'Education': education_level,
'Income': income_level
}
features_diabetes = pd.DataFrame(user_data_diabetes, index=[0])
features_diabetes_scaled = diabetes_scaler.transform(features_diabetes)
pred_diabetes = diabetes_model.predict(features_diabetes_scaled)
user_data_heart_attack ={
'Age': age,
'Cholesterol': cholesterol,
'Heart Rate': heart_rate,
'Diabetes': pred_diabetes[0],
'Family History': family_history,
'Obesity': obesity,
'Alcohol Consumption': alcohol_consumption,
'Exercise Hours Per Week' : exercise_hours,
'Stress Level': stress_level,
'Sedentary Hours Per Day': sedentary_hours,
'Income': income,
'BMI': bmi,
'Triglycerides': triglycerides,
'Physical Activity Days Per Week': physical_days,
'Sleep Hours Per Day': sleep_hours,
'BP_Systolic': systolic,
'BP_Diastolic': diastolic,
'Sex_Female': sex,
'Sex_Male': 1 - sex,
}
features_heart_attack = pd.DataFrame(user_data_heart_attack, index=[0])
features_heart_attack_scaled = heart_scaler.transform(features_heart_attack)
pred_heart = heart_model.predict(features_heart_attack_scaled)
return features_stroke,pred_stroke, features_hypertension, pred_hypertension, features_diabetes, pred_diabetes, features_heart_attack, pred_heart
df_stroke, pred_stroke,df_hypertension, pred_hypertension,df_diabetes, pred_diabetes, df_heart_attack, pred_heart = user_input_features()
st.write("## YOUR PREDICTIONS: ")
st.write("## Hypertension User Input: ")
df_hypertension
st.write("Predicted Hypertension: ")
pred_hypertension
st.write("## Stroke User Input and Hypertension(pred. vals added): ")
df_stroke
st.write("Predicted Stroke: ")
pred_stroke
st.write("## Diabetes User Input and Hypertension and Stroke(pred. vals added): ")
df_diabetes
st.write("Predicted Diabetes: ")
pred_diabetes
st.write("## Heart Attack User Input and Diabetes: ")
df_heart_attack
st.write("Predicted Heart Attack: ")
pred_heart