Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Only run PySR in another process
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
import tempfile
|
6 |
from typing import Optional
|
7 |
|
@@ -35,26 +35,22 @@ def generate_data(s: str, num_points: int, noise_level: float):
|
|
35 |
return pd.DataFrame({"x": x}), y_noisy
|
36 |
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
):
|
50 |
-
|
51 |
-
|
52 |
-
return (
|
53 |
-
empty_df,
|
54 |
-
"Please select at least one operator!",
|
55 |
-
)
|
56 |
# Look at some statistics of the file:
|
57 |
-
df = pd.read_csv(
|
58 |
if len(df) == 0:
|
59 |
return (
|
60 |
empty_df,
|
@@ -78,10 +74,44 @@ def greet(
|
|
78 |
y = np.array(df[col_to_fit])
|
79 |
X = df.drop([col_to_fit], axis=1)
|
80 |
else:
|
|
|
81 |
X, y = generate_data(test_equation, num_points, noise_level)
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
model = pysr.PySRRegressor(
|
84 |
-
|
85 |
maxsize=maxsize,
|
86 |
niterations=niterations,
|
87 |
binary_operators=binary_operators,
|
@@ -94,25 +124,11 @@ def greet(
|
|
94 |
)
|
95 |
model.fit(X, y)
|
96 |
|
97 |
-
df = model.equations_[["
|
98 |
# Convert all columns to string type:
|
99 |
-
|
100 |
-
msg = (
|
101 |
-
"Success!\n"
|
102 |
-
f"You may run the model locally (faster) with "
|
103 |
-
f"the following parameters:"
|
104 |
-
+ f"""
|
105 |
-
model = PySRRegressor(
|
106 |
-
niterations={niterations},
|
107 |
-
binary_operators={str(binary_operators)},
|
108 |
-
unary_operators={str(unary_operators)},
|
109 |
-
maxsize={maxsize},
|
110 |
-
)
|
111 |
-
model.fit(X, y)"""
|
112 |
-
)
|
113 |
|
114 |
-
|
115 |
-
return df, msg
|
116 |
|
117 |
|
118 |
def _data_layout():
|
@@ -218,18 +234,18 @@ def main():
|
|
218 |
|
219 |
with gr.Column():
|
220 |
blocks["df"] = gr.Dataframe(
|
221 |
-
headers=["
|
222 |
-
datatype=["
|
223 |
)
|
224 |
blocks["run"] = gr.Button()
|
225 |
-
blocks["error_log"] = gr.Textbox(label="Error Log")
|
226 |
|
227 |
blocks["run"].click(
|
228 |
-
|
229 |
inputs=[
|
230 |
blocks[k]
|
231 |
for k in [
|
232 |
"file_input",
|
|
|
233 |
"test_equation",
|
234 |
"num_points",
|
235 |
"noise_level",
|
@@ -238,10 +254,9 @@ def main():
|
|
238 |
"binary_operators",
|
239 |
"unary_operators",
|
240 |
"seed",
|
241 |
-
"force_run",
|
242 |
]
|
243 |
],
|
244 |
-
outputs=[blocks["df"]
|
245 |
)
|
246 |
|
247 |
# Any update to the equation choice will trigger a replot:
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import multiprocessing as mp
|
5 |
import tempfile
|
6 |
from typing import Optional
|
7 |
|
|
|
35 |
return pd.DataFrame({"x": x}), y_noisy
|
36 |
|
37 |
|
38 |
+
def _greet_dispatch(
|
39 |
+
file_input,
|
40 |
+
force_run,
|
41 |
+
test_equation,
|
42 |
+
num_points,
|
43 |
+
noise_level,
|
44 |
+
niterations,
|
45 |
+
maxsize,
|
46 |
+
binary_operators,
|
47 |
+
unary_operators,
|
48 |
+
seed,
|
49 |
):
|
50 |
+
"""Load data, then spawn a process to run the greet function."""
|
51 |
+
if file_input is not None:
|
|
|
|
|
|
|
|
|
52 |
# Look at some statistics of the file:
|
53 |
+
df = pd.read_csv(file_input)
|
54 |
if len(df) == 0:
|
55 |
return (
|
56 |
empty_df,
|
|
|
74 |
y = np.array(df[col_to_fit])
|
75 |
X = df.drop([col_to_fit], axis=1)
|
76 |
else:
|
77 |
+
# X, y = generate_data(block["test_equation"], block["num_points"], block["noise_level"])
|
78 |
X, y = generate_data(test_equation, num_points, noise_level)
|
79 |
|
80 |
+
queue = mp.Queue()
|
81 |
+
process = mp.Process(
|
82 |
+
target=greet,
|
83 |
+
kwargs=dict(
|
84 |
+
X=X,
|
85 |
+
y=y,
|
86 |
+
queue=queue,
|
87 |
+
niterations=niterations,
|
88 |
+
maxsize=maxsize,
|
89 |
+
binary_operators=binary_operators,
|
90 |
+
unary_operators=unary_operators,
|
91 |
+
seed=seed,
|
92 |
+
),
|
93 |
+
)
|
94 |
+
process.start()
|
95 |
+
output = queue.get()
|
96 |
+
process.join()
|
97 |
+
return output
|
98 |
+
|
99 |
+
|
100 |
+
def greet(
|
101 |
+
*,
|
102 |
+
queue: mp.Queue,
|
103 |
+
X,
|
104 |
+
y,
|
105 |
+
niterations: int,
|
106 |
+
maxsize: int,
|
107 |
+
binary_operators: list,
|
108 |
+
unary_operators: list,
|
109 |
+
seed: int,
|
110 |
+
):
|
111 |
+
import pysr
|
112 |
+
|
113 |
model = pysr.PySRRegressor(
|
114 |
+
progress=False,
|
115 |
maxsize=maxsize,
|
116 |
niterations=niterations,
|
117 |
binary_operators=binary_operators,
|
|
|
124 |
)
|
125 |
model.fit(X, y)
|
126 |
|
127 |
+
df = model.equations_[["complexity", "loss", "equation"]]
|
128 |
# Convert all columns to string type:
|
129 |
+
queue.put(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
return 0
|
|
|
132 |
|
133 |
|
134 |
def _data_layout():
|
|
|
234 |
|
235 |
with gr.Column():
|
236 |
blocks["df"] = gr.Dataframe(
|
237 |
+
headers=["complexity", "loss", "equation"],
|
238 |
+
datatype=["number", "number", "str"],
|
239 |
)
|
240 |
blocks["run"] = gr.Button()
|
|
|
241 |
|
242 |
blocks["run"].click(
|
243 |
+
_greet_dispatch,
|
244 |
inputs=[
|
245 |
blocks[k]
|
246 |
for k in [
|
247 |
"file_input",
|
248 |
+
"force_run",
|
249 |
"test_equation",
|
250 |
"num_points",
|
251 |
"noise_level",
|
|
|
254 |
"binary_operators",
|
255 |
"unary_operators",
|
256 |
"seed",
|
|
|
257 |
]
|
258 |
],
|
259 |
+
outputs=[blocks["df"]],
|
260 |
)
|
261 |
|
262 |
# Any update to the equation choice will trigger a replot:
|