MilesCranmer commited on
Commit
e0d94cd
·
1 Parent(s): 3090581

Try additional initial conditions during optimization

Browse files
Files changed (2) hide show
  1. README.md +2 -0
  2. julia/sr.jl +9 -0
README.md CHANGED
@@ -207,11 +207,13 @@ pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
207
  - [ ] Consider adding mutation for constant<->variable
208
  - [ ] Hierarchical model, so can re-use functional forms. Output of one equation goes into second equation?
209
  - [ ] Use NN to generate weights over all probability distribution conditional on error and existing equation, and train on some randomly-generated equations
 
210
  - [ ] Performance:
211
  - [ ] Use an enum for functions instead of storing them?
212
  - Current most expensive operations:
213
  - [ ] Calculating the loss function - there is duplicate calculations happening.
214
  - [x] Declaration of the weights array every iteration
 
215
  - [x] Make scaling of changes to constant a hyperparameter
216
  - [x] Make deletion op join deleted subtree to parent
217
  - [x] Update hall of fame every iteration?
 
207
  - [ ] Consider adding mutation for constant<->variable
208
  - [ ] Hierarchical model, so can re-use functional forms. Output of one equation goes into second equation?
209
  - [ ] Use NN to generate weights over all probability distribution conditional on error and existing equation, and train on some randomly-generated equations
210
+ - [ ] Add GPU capability?
211
  - [ ] Performance:
212
  - [ ] Use an enum for functions instead of storing them?
213
  - Current most expensive operations:
214
  - [ ] Calculating the loss function - there is duplicate calculations happening.
215
  - [x] Declaration of the weights array every iteration
216
+ - [x] Try other initial conditions for optimizer
217
  - [x] Make scaling of changes to constant a hyperparameter
218
  - [x] Make deletion op join deleted subtree to parent
219
  - [x] Update hall of fame every iteration?
julia/sr.jl CHANGED
@@ -687,6 +687,14 @@ function optimizeConstants(member::PopMember)::PopMember
687
  result = Optim.optimize(f, x0, Optim.Newton(), Optim.Options(iterations=20))
688
  else
689
  result = Optim.optimize(f, x0, Optim.NelderMead(), Optim.Options(iterations=100))
 
 
 
 
 
 
 
 
690
  end
691
  if Optim.converged(result)
692
  setConstants(member.tree, result.minimizer)
@@ -731,6 +739,7 @@ function fullRun(niterations::Integer;
731
  bestSubPops[i] = bestSubPop(allPops[i], topn=topn)
732
  for j=1:bestSubPops[i].n
733
  bestSubPops[i].members[j].tree = simplifyTree(bestSubPops[i].members[j].tree)
 
734
  if shouldOptimizeConstants
735
  bestSubPops[i].members[j] = optimizeConstants(bestSubPops[i].members[j])
736
  end
 
687
  result = Optim.optimize(f, x0, Optim.Newton(), Optim.Options(iterations=20))
688
  else
689
  result = Optim.optimize(f, x0, Optim.NelderMead(), Optim.Options(iterations=100))
690
+
691
+ # Try other initial conditions:
692
+ for i=1:5
693
+ tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), Optim.NelderMead(), Optim.Options(iterations=100))
694
+ if tmpresult.minimum < result.minimum
695
+ result = tmpresult
696
+ end
697
+ end
698
  end
699
  if Optim.converged(result)
700
  setConstants(member.tree, result.minimizer)
 
739
  bestSubPops[i] = bestSubPop(allPops[i], topn=topn)
740
  for j=1:bestSubPops[i].n
741
  bestSubPops[i].members[j].tree = simplifyTree(bestSubPops[i].members[j].tree)
742
+ bestSubPops[i].members[j].tree = combineOperators(bestSubPops[i].members[j].tree)
743
  if shouldOptimizeConstants
744
  bestSubPops[i].members[j] = optimizeConstants(bestSubPops[i].members[j])
745
  end