Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
cf8bf07
1
Parent(s):
d563645
Fix up citable link
Browse files- CITATION.md +27 -0
- README.md +5 -1
CITATION.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Citing
|
2 |
+
|
3 |
+
This software:
|
4 |
+
```
|
5 |
+
@software{pysr,
|
6 |
+
author = {Miles Cranmer},
|
7 |
+
title = {PySR: Fast & Parallelized Symbolic Regression in Python/Julia},
|
8 |
+
month = sep,
|
9 |
+
year = 2020,
|
10 |
+
publisher = {Zenodo},
|
11 |
+
doi = {10.5281/zenodo.4052869},
|
12 |
+
url = {https://doi.org/10.5281/zenodo.4052869}
|
13 |
+
}
|
14 |
+
```
|
15 |
+
|
16 |
+
Metric used for scoring equations:
|
17 |
+
```
|
18 |
+
@article{cranmer2020discovering,
|
19 |
+
title={Discovering Symbolic Models from Deep Learning with Inductive Biases},
|
20 |
+
author={Miles Cranmer and Alvaro Sanchez-Gonzalez and Peter Battaglia and Rui Xu and Kyle Cranmer and David Spergel and Shirley Ho},
|
21 |
+
journal={NeurIPS 2020},
|
22 |
+
year={2020},
|
23 |
+
eprint={2006.11287},
|
24 |
+
archivePrefix={arXiv},
|
25 |
+
primaryClass={cs.LG}
|
26 |
+
}
|
27 |
+
```
|
README.md
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
# PySR.jl
|
2 |
|
3 |
-
[![
|
4 |
[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)
|
5 |
[![Build Status](https://travis-ci.com/MilesCranmer/PySR.svg?branch=master)](https://travis-ci.com/MilesCranmer/PySR)
|
6 |
|
7 |
**Symbolic regression built on Julia, and interfaced by Python.
|
8 |
Uses regularized evolution, simulated annealing, and gradient-free optimization.**
|
9 |
|
|
|
|
|
|
|
|
|
10 |
Symbolic regression is a very interpretable machine learning algorithm
|
11 |
for low-dimensional problems: these tools search equation space
|
12 |
to find algebraic relations that approximate a dataset.
|
|
|
1 |
# PySR.jl
|
2 |
|
3 |
+
[![Documentation Status](https://readthedocs.org/projects/pysr/badge/?version=latest)](https://pysr.readthedocs.io/en/latest/?badge=latest)
|
4 |
[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)
|
5 |
[![Build Status](https://travis-ci.com/MilesCranmer/PySR.svg?branch=master)](https://travis-ci.com/MilesCranmer/PySR)
|
6 |
|
7 |
**Symbolic regression built on Julia, and interfaced by Python.
|
8 |
Uses regularized evolution, simulated annealing, and gradient-free optimization.**
|
9 |
|
10 |
+
[Cite this software](https://github.com/MilesCranmer/PySR/blob/master/CITATION.md)
|
11 |
+
|
12 |
+
[Documentation](https://pysr.readthedocs.io/en/latest)
|
13 |
+
|
14 |
Symbolic regression is a very interpretable machine learning algorithm
|
15 |
for low-dimensional problems: these tools search equation space
|
16 |
to find algebraic relations that approximate a dataset.
|