MilesCranmer commited on
Commit
bd21c66
·
1 Parent(s): fa43750

Document loss functions

Browse files
Files changed (1) hide show
  1. docs/options.md +9 -0
docs/options.md CHANGED
@@ -16,6 +16,7 @@ may find useful include:
16
  - `variable_names` (or pandas input)
17
  - Constraining operator complexity
18
  - LaTeX, SymPy, and callable equation output
 
19
 
20
  These are described below
21
 
@@ -158,3 +159,11 @@ for the best equation, using the `score` column to sort equations.
158
  `best_latex()` returns the LaTeX form of this, and `best_callable()`
159
  returns a callable function.
160
 
 
 
 
 
 
 
 
 
 
16
  - `variable_names` (or pandas input)
17
  - Constraining operator complexity
18
  - LaTeX, SymPy, and callable equation output
19
+ - `loss`
20
 
21
  These are described below
22
 
 
159
  `best_latex()` returns the LaTeX form of this, and `best_callable()`
160
  returns a callable function.
161
 
162
+ ## `loss`
163
+
164
+ The default loss is mean-square error, and weighted mean-square error.
165
+ One can pass an arbitrary Julia string to define a custom loss, using,
166
+ e.g., `loss="myloss(x, y) = abs(x - y)^1.5"`. For more details,
167
+ see the
168
+ [Losses](https://milescranmer.github.io/SymbolicRegression.jl/dev/losses/)
169
+ page for SymbolicRegression.jl.