Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
9c27796
1
Parent(s):
907cc73
Fix parallelization issue
Browse files- eureqa.jl +1 -0
- paralleleureqa.jl +38 -16
eureqa.jl
CHANGED
@@ -420,6 +420,7 @@ function run(
|
|
420 |
ncycles::Int,
|
421 |
annealing::Bool=false,
|
422 |
)::Population
|
|
|
423 |
|
424 |
allT = LinRange(1.0, 0.0, ncycles)
|
425 |
for iT in 1:size(allT)[1]
|
|
|
420 |
ncycles::Int,
|
421 |
annealing::Bool=false,
|
422 |
)::Population
|
423 |
+
pop = deepcopy(pop)
|
424 |
|
425 |
allT = LinRange(1.0, 0.0, ncycles)
|
426 |
for iT in 1:size(allT)[1]
|
paralleleureqa.jl
CHANGED
@@ -1,36 +1,58 @@
|
|
1 |
using Distributed
|
2 |
-
const nthreads =
|
3 |
addprocs(nthreads)
|
|
|
4 |
@everywhere include("eureqa.jl")
|
5 |
|
6 |
println("Lets try to learn (x2^2 + cos(x3) + 5) using regularized evolution from scratch")
|
7 |
const npop = 100
|
8 |
const annealing = false
|
9 |
const niterations = 10
|
10 |
-
|
11 |
|
12 |
# Generate random initial populations
|
13 |
-
allPops = [Population(npop, 3) for i=1:nthreads]
|
14 |
|
15 |
# Create a mapping for running the algorithm on all processes
|
16 |
-
@everywhere f = (pop,)->run(pop,
|
|
|
17 |
|
18 |
-
|
19 |
-
for i=1:niterations
|
20 |
# Map it over our workers
|
21 |
-
global allPops = deepcopy(pmap(f, allPops))
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Get best 10 models for each processes
|
24 |
-
bestPops = Population(
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
end
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
end
|
35 |
|
|
|
36 |
|
|
|
1 |
using Distributed
|
2 |
+
const nthreads = 8
|
3 |
addprocs(nthreads)
|
4 |
+
|
5 |
@everywhere include("eureqa.jl")
|
6 |
|
7 |
println("Lets try to learn (x2^2 + cos(x3) + 5) using regularized evolution from scratch")
|
8 |
const npop = 100
|
9 |
const annealing = false
|
10 |
const niterations = 10
|
11 |
+
const ncyclesperiteration = 1000
|
12 |
|
13 |
# Generate random initial populations
|
|
|
14 |
|
15 |
# Create a mapping for running the algorithm on all processes
|
16 |
+
@everywhere f = (pop,)->run(pop, ncyclesperiteration, annealing)
|
17 |
+
|
18 |
|
19 |
+
function update(allPops::Array{Population, 1}, bestScore::Float64, pool::AbstractWorkerPool)
|
|
|
20 |
# Map it over our workers
|
21 |
+
#global allPops = deepcopy(pmap(f, deepcopy(allPops)))
|
22 |
+
curAllPops = deepcopy(pmap(f, allPops))
|
23 |
+
for j=1:nthreads
|
24 |
+
allPops[j] = curAllPops[j]
|
25 |
+
end
|
26 |
|
27 |
# Get best 10 models for each processes
|
28 |
+
bestPops = Population([member for pop in allPops for member in bestSubPop(pop).members])
|
29 |
+
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
|
30 |
+
bestCurScore = bestPops.members[bestCurScoreIdx].score
|
31 |
+
if bestCurScore < bestScore
|
32 |
+
bestScore = bestCurScore
|
33 |
+
println(bestScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
|
34 |
+
end
|
35 |
+
|
36 |
+
# Migration
|
37 |
+
for j=1:nthreads
|
38 |
+
allPops[j].members[1:50] = deepcopy(bestPops.members[rand(1:bestPops.n, 50)])
|
39 |
end
|
40 |
+
return allPops, bestScore
|
41 |
+
end
|
42 |
+
|
43 |
+
|
44 |
+
function runExperiment()
|
45 |
+
# Do niterations cycles
|
46 |
+
allPops = [Population(npop, 3) for j=1:nthreads]
|
47 |
+
bestScore = Inf
|
48 |
+
#pool = CachingPool(workers())
|
49 |
+
pool = WorkerPool(workers())
|
50 |
+
for i=1:niterations
|
51 |
+
allPops, bestScore = update(allPops, bestScore, pool)
|
52 |
+
end
|
53 |
+
|
54 |
+
return bestScore
|
55 |
end
|
56 |
|
57 |
+
runExperiment()
|
58 |
|