MilesCranmer commited on
Commit
8ff33c6
·
1 Parent(s): 5dffe92

More documentation

Browse files
Files changed (2) hide show
  1. README.md +30 -4
  2. paralleleureqa.jl +1 -1
README.md CHANGED
@@ -2,7 +2,7 @@
2
 
3
  For now, just modify the script to your liking:
4
 
5
- `julia paralleleureqa.jl`
6
 
7
  ## Modification
8
 
@@ -11,6 +11,10 @@ You can change the binary and unary operators in `eureqa.jl` here:
11
  const binops = [plus, mult]
12
  const unaops = [sin, cos, exp];
13
  ```
 
 
 
 
14
 
15
  You can change the dataset here:
16
  ```
@@ -19,12 +23,34 @@ const X = rand(100, nvar);
19
  # Here is the function we want to learn (x2^2 + cos(x3) + 5)
20
  const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .+ 5.0;
21
  ```
22
-
23
- The default number of processes is 10; this is set with
24
- `addprocs(10)` in `paralleleureqa.jl`.
25
 
26
  ### Hyperparameters
27
 
28
  Turn on annealing by setting the following in `paralleleureqa.jl`:
29
 
30
  `const annealing = true`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  For now, just modify the script to your liking:
4
 
5
+ `JULIA_NUM_THREADS=8 julia paralleleureqa.jl`
6
 
7
  ## Modification
8
 
 
11
  const binops = [plus, mult]
12
  const unaops = [sin, cos, exp];
13
  ```
14
+ E.g., you can add another binary function with:
15
+ ```
16
+ const binops = [plus, mult, (x, y)->x^2*y]
17
+ ```
18
 
19
  You can change the dataset here:
20
  ```
 
23
  # Here is the function we want to learn (x2^2 + cos(x3) + 5)
24
  const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .+ 5.0;
25
  ```
26
+ by either loading in a dataset, or modifying the definition of `y`.
 
 
27
 
28
  ### Hyperparameters
29
 
30
  Turn on annealing by setting the following in `paralleleureqa.jl`:
31
 
32
  `const annealing = true`
33
+
34
+ Annealing allows each evolutionary cycle to turn down the exploration
35
+ rate over time: at the end (temperature 0), it will only select solutions
36
+ better than existing solutions.
37
+
38
+ The following parameter, parsimony, is how much to punish complex solutions:
39
+ `
40
+ const parsimony = 0.01
41
+ `
42
+
43
+ Finally, the following
44
+ determins how much to scale temperature by (T between 0 and 1).
45
+ `
46
+ const alpha = 10.0
47
+ `
48
+ Larger alpha means more exploration.
49
+
50
+ One can also adjust the relative probabilities of each mutation here:
51
+ ```
52
+ weights = [8, 1, 1, 1]
53
+ ```
54
+ (for: 1. perturb constant, 2. mutate operator,
55
+ 3. append a node, 4. delete a subtree).
56
+
paralleleureqa.jl CHANGED
@@ -29,7 +29,7 @@ for k=1:niterations
29
  # Migration
30
  for j=1:nthreads
31
  for k in rand(1:npop, 50)
32
- # Copy in case one gets copied twice
33
  allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
34
  end
35
  end
 
29
  # Migration
30
  for j=1:nthreads
31
  for k in rand(1:npop, 50)
32
+ # Copy in case one gets used twice
33
  allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
34
  end
35
  end