Spaces:
Running
Running
MilesCranmer
commited on
Merge pull request #87 from MilesCranmer/pyjulia
Browse files- .github/workflows/CI.yml +1 -0
- .github/workflows/CI_Windows.yml +1 -0
- .github/workflows/CI_conda.yml +76 -0
- .github/workflows/CI_mac.yml +1 -0
- .gitignore +3 -0
- Dockerfile +23 -9
- Project.toml +1 -1
- README.md +10 -3
- docs/start.md +9 -11
- environment.yml +13 -0
- pysr/__init__.py +10 -1
- pysr/feynman_problems.py +3 -10
- pysr/sr.py +266 -462
- requirements.txt +1 -0
- setup.py +2 -2
- test/test.py +0 -1
- test/test_static_libpython_warning.py +13 -0
.github/workflows/CI.yml
CHANGED
@@ -61,6 +61,7 @@ jobs:
|
|
61 |
python -m pip install --upgrade pip
|
62 |
pip install -r requirements.txt
|
63 |
python setup.py install
|
|
|
64 |
- name: "Install Coverage tool"
|
65 |
run: pip install coverage coveralls
|
66 |
- name: "Run tests"
|
|
|
61 |
python -m pip install --upgrade pip
|
62 |
pip install -r requirements.txt
|
63 |
python setup.py install
|
64 |
+
python -c 'import pysr; pysr.install()'
|
65 |
- name: "Install Coverage tool"
|
66 |
run: pip install coverage coveralls
|
67 |
- name: "Run tests"
|
.github/workflows/CI_Windows.yml
CHANGED
@@ -61,6 +61,7 @@ jobs:
|
|
61 |
python -m pip install --upgrade pip
|
62 |
pip install -r requirements.txt
|
63 |
python setup.py install
|
|
|
64 |
- name: "Run tests"
|
65 |
run: python -m unittest test.test
|
66 |
shell: bash
|
|
|
61 |
python -m pip install --upgrade pip
|
62 |
pip install -r requirements.txt
|
63 |
python setup.py install
|
64 |
+
python -c 'import pysr; pysr.install()'
|
65 |
- name: "Run tests"
|
66 |
run: python -m unittest test.test
|
67 |
shell: bash
|
.github/workflows/CI_conda.yml
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: CI_conda
|
2 |
+
# This tests whether conda, a statically-linked libpython, works
|
3 |
+
# with PySR.
|
4 |
+
|
5 |
+
on:
|
6 |
+
push:
|
7 |
+
branches:
|
8 |
+
- '*'
|
9 |
+
paths:
|
10 |
+
- 'test/**'
|
11 |
+
- 'pysr/**'
|
12 |
+
- '.github/workflows/**'
|
13 |
+
- 'setup.py'
|
14 |
+
- 'Project.toml'
|
15 |
+
pull_request:
|
16 |
+
branches:
|
17 |
+
- '*'
|
18 |
+
paths:
|
19 |
+
- 'test/**'
|
20 |
+
- 'pysr/**'
|
21 |
+
- '.github/workflows/**'
|
22 |
+
- 'setup.py'
|
23 |
+
- 'Project.toml'
|
24 |
+
|
25 |
+
jobs:
|
26 |
+
test:
|
27 |
+
runs-on: ${{ matrix.os }}
|
28 |
+
strategy:
|
29 |
+
matrix:
|
30 |
+
julia-version: ['1.7.1']
|
31 |
+
python-version: ['3.9']
|
32 |
+
os: ['ubuntu-latest']
|
33 |
+
|
34 |
+
steps:
|
35 |
+
- uses: actions/checkout@v1.0.0
|
36 |
+
- name: "Set up Julia"
|
37 |
+
uses: julia-actions/setup-julia@v1.6.0
|
38 |
+
with:
|
39 |
+
version: ${{ matrix.julia-version }}
|
40 |
+
- name: "Change package server"
|
41 |
+
shell: bash
|
42 |
+
env:
|
43 |
+
JULIA_PKG_SERVER: ""
|
44 |
+
run: |
|
45 |
+
julia -e 'using Pkg; Pkg.Registry.add("General")'
|
46 |
+
- name: "Cache dependencies"
|
47 |
+
uses: actions/cache@v1 # Thanks FromFile.jl
|
48 |
+
env:
|
49 |
+
cache-name: cache-artifacts
|
50 |
+
with:
|
51 |
+
path: ~/.julia/artifacts
|
52 |
+
key: ${{ runner.os }}-build-${{ env.cache-name }}-${{ hashFiles('**/Project.toml') }}
|
53 |
+
restore-keys: |
|
54 |
+
${{ runner.os }}-build-${{ env.cache-name }}-
|
55 |
+
${{ runner.os }}-build-
|
56 |
+
${{ runner.os }}-
|
57 |
+
- name: "Set up Conda"
|
58 |
+
uses: conda-incubator/setup-miniconda@v2
|
59 |
+
with:
|
60 |
+
miniforge-variant: Mambaforge
|
61 |
+
miniforge-version: latest
|
62 |
+
auto-activate-base: true
|
63 |
+
python-version: ${{ matrix.python-version }}
|
64 |
+
activate-environment: test
|
65 |
+
environment-file: environment.yml
|
66 |
+
- name: "Install PySR"
|
67 |
+
run: |
|
68 |
+
python3 -m pip install .
|
69 |
+
python3 -c 'import pysr; pysr.install()'
|
70 |
+
shell: bash -l {0}
|
71 |
+
- name: "Ensure that static libpython warning appears"
|
72 |
+
run: python3 test/test_static_libpython_warning.py
|
73 |
+
shell: bash -l {0}
|
74 |
+
- name: "Run tests"
|
75 |
+
run: python3 -m unittest test.test
|
76 |
+
shell: bash -l {0}
|
.github/workflows/CI_mac.yml
CHANGED
@@ -61,6 +61,7 @@ jobs:
|
|
61 |
python -m pip install --upgrade pip
|
62 |
pip install -r requirements.txt
|
63 |
python setup.py install
|
|
|
64 |
- name: "Run tests"
|
65 |
run: python -m unittest test.test
|
66 |
shell: bash
|
|
|
61 |
python -m pip install --upgrade pip
|
62 |
pip install -r requirements.txt
|
63 |
python setup.py install
|
64 |
+
python -c 'import pysr; pysr.install()'
|
65 |
- name: "Run tests"
|
66 |
run: python -m unittest test.test
|
67 |
shell: bash
|
.gitignore
CHANGED
@@ -12,3 +12,6 @@ dist
|
|
12 |
*.pyproj
|
13 |
*.sln
|
14 |
pysr/.vs/
|
|
|
|
|
|
|
|
12 |
*.pyproj
|
13 |
*.sln
|
14 |
pysr/.vs/
|
15 |
+
pysr.egg-info
|
16 |
+
Manifest.toml
|
17 |
+
workflow
|
Dockerfile
CHANGED
@@ -1,30 +1,44 @@
|
|
1 |
# This builds a dockerfile containing a working copy of PySR
|
2 |
# with all pre-requisites installed.
|
3 |
|
4 |
-
|
5 |
ARG VERSION=latest
|
|
|
6 |
FROM julia:$VERSION
|
7 |
|
8 |
RUN apt-get update && apt-get upgrade -y && apt-get install -y \
|
9 |
-
build-essential
|
10 |
-
|
|
|
|
|
11 |
&& apt-get clean \
|
12 |
&& rm -rf /var/lib/apt/lists/*
|
13 |
|
14 |
WORKDIR /pysr
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Caches install (https://stackoverflow.com/questions/25305788/how-to-avoid-reinstalling-packages-when-building-docker-image-for-python-project)
|
17 |
ADD ./requirements.txt /pysr/requirements.txt
|
18 |
RUN pip3 install -r /pysr/requirements.txt
|
19 |
|
20 |
# Install PySR:
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
RUN pip3 install .
|
23 |
|
24 |
# Install Julia pre-requisites:
|
25 |
-
RUN
|
26 |
-
|
27 |
-
# Install IPython and other useful libraries:
|
28 |
-
RUN pip3 install ipython jupyter matplotlib
|
29 |
|
30 |
-
CMD ["bash"]
|
|
|
1 |
# This builds a dockerfile containing a working copy of PySR
|
2 |
# with all pre-requisites installed.
|
3 |
|
|
|
4 |
ARG VERSION=latest
|
5 |
+
|
6 |
FROM julia:$VERSION
|
7 |
|
8 |
RUN apt-get update && apt-get upgrade -y && apt-get install -y \
|
9 |
+
make build-essential libssl-dev zlib1g-dev \
|
10 |
+
libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
|
11 |
+
libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev \
|
12 |
+
vim git \
|
13 |
&& apt-get clean \
|
14 |
&& rm -rf /var/lib/apt/lists/*
|
15 |
|
16 |
WORKDIR /pysr
|
17 |
|
18 |
+
# Install PyEnv to switch Python to dynamically linked version:
|
19 |
+
RUN curl https://pyenv.run | bash
|
20 |
+
ENV PATH="/root/.pyenv/bin:$PATH"
|
21 |
+
|
22 |
+
ENV PYTHON_VERSION="3.9.10"
|
23 |
+
RUN PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install ${PYTHON_VERSION}
|
24 |
+
ENV PATH="/root/.pyenv/versions/${PYTHON_VERSION}/bin:$PATH"
|
25 |
+
|
26 |
+
# Install IPython and other useful libraries:
|
27 |
+
RUN pip install ipython jupyter matplotlib
|
28 |
+
|
29 |
# Caches install (https://stackoverflow.com/questions/25305788/how-to-avoid-reinstalling-packages-when-building-docker-image-for-python-project)
|
30 |
ADD ./requirements.txt /pysr/requirements.txt
|
31 |
RUN pip3 install -r /pysr/requirements.txt
|
32 |
|
33 |
# Install PySR:
|
34 |
+
# We do a minimal copy so it doesn't need to rerun at every file change:
|
35 |
+
ADD ./setup.py /pysr/setup.py
|
36 |
+
ADD ./README.md /pysr/README.md
|
37 |
+
Add ./Project.toml /pysr/Project.toml
|
38 |
+
ADD ./pysr/ /pysr/pysr/
|
39 |
RUN pip3 install .
|
40 |
|
41 |
# Install Julia pre-requisites:
|
42 |
+
RUN python3 -c 'import pysr; pysr.install()'
|
|
|
|
|
|
|
43 |
|
44 |
+
CMD ["bash"]
|
Project.toml
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"
|
3 |
|
4 |
[compat]
|
5 |
-
SymbolicRegression = "0.6.
|
6 |
julia = "1.5"
|
|
|
2 |
SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"
|
3 |
|
4 |
[compat]
|
5 |
+
SymbolicRegression = "0.6.18"
|
6 |
julia = "1.5"
|
README.md
CHANGED
@@ -62,11 +62,14 @@ and [linux](https://julialang.org/downloads/platform/#linux_and_freebsd).
|
|
62 |
|
63 |
You can install PySR with:
|
64 |
```bash
|
65 |
-
|
|
|
66 |
```
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
by [tweaking the Julia package server](https://github.com/MilesCranmer/PySR/issues/27).
|
71 |
to use up-to-date packages.
|
72 |
|
@@ -121,6 +124,10 @@ which gives:
|
|
121 |
x0**2 + 2.000016*cos(x3) - 1.9999845
|
122 |
```
|
123 |
|
|
|
|
|
|
|
|
|
124 |
One can also use `best_tex` to get the LaTeX form,
|
125 |
or `best_callable` to get a function you can call.
|
126 |
This uses a score which balances complexity and error;
|
|
|
62 |
|
63 |
You can install PySR with:
|
64 |
```bash
|
65 |
+
pip3 install pysr
|
66 |
+
python3 -c 'import pysr; pysr.install()'
|
67 |
```
|
68 |
+
The second line will install and update the required Julia packages, including
|
69 |
+
`PyCall.jl`.
|
70 |
|
71 |
+
|
72 |
+
Most common issues at this stage are solved
|
73 |
by [tweaking the Julia package server](https://github.com/MilesCranmer/PySR/issues/27).
|
74 |
to use up-to-date packages.
|
75 |
|
|
|
124 |
x0**2 + 2.000016*cos(x3) - 1.9999845
|
125 |
```
|
126 |
|
127 |
+
The second and additional calls of `pysr` will be significantly
|
128 |
+
faster in startup time, since the first call to Julia will compile
|
129 |
+
and cache functions from the symbolic regression backend.
|
130 |
+
|
131 |
One can also use `best_tex` to get the LaTeX form,
|
132 |
or `best_callable` to get a function you can call.
|
133 |
This uses a score which balances complexity and error;
|
docs/start.md
CHANGED
@@ -7,20 +7,14 @@ Install Julia - see [downloads](https://julialang.org/downloads/), and
|
|
7 |
then instructions for [mac](https://julialang.org/downloads/platform/#macos)
|
8 |
and [linux](https://julialang.org/downloads/platform/#linux_and_freebsd).
|
9 |
(Don't use the `conda-forge` version; it doesn't seem to work properly.)
|
10 |
-
Then, at the command line,
|
11 |
-
install the `Optim` and `SpecialFunctions` packages via:
|
12 |
|
|
|
13 |
```bash
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
For python, you need to have Python 3, numpy, sympy, and pandas installed.
|
18 |
-
|
19 |
-
You can install this package from PyPI with:
|
20 |
-
|
21 |
-
```bash
|
22 |
-
pip install pysr
|
23 |
```
|
|
|
|
|
24 |
|
25 |
## Quickstart
|
26 |
|
@@ -48,6 +42,10 @@ which gives:
|
|
48 |
x0**2 + 2.000016*cos(x3) - 1.9999845
|
49 |
```
|
50 |
|
|
|
|
|
|
|
|
|
51 |
One can also use `best_tex` to get the LaTeX form,
|
52 |
or `best_callable` to get a function you can call.
|
53 |
This uses a score which balances complexity and error;
|
|
|
7 |
then instructions for [mac](https://julialang.org/downloads/platform/#macos)
|
8 |
and [linux](https://julialang.org/downloads/platform/#linux_and_freebsd).
|
9 |
(Don't use the `conda-forge` version; it doesn't seem to work properly.)
|
|
|
|
|
10 |
|
11 |
+
You can install PySR with:
|
12 |
```bash
|
13 |
+
pip3 install pysr
|
14 |
+
python3 -c 'import pysr; pysr.install()'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
```
|
16 |
+
The second line will install and update the required Julia packages, including
|
17 |
+
`PyCall.jl`.
|
18 |
|
19 |
## Quickstart
|
20 |
|
|
|
42 |
x0**2 + 2.000016*cos(x3) - 1.9999845
|
43 |
```
|
44 |
|
45 |
+
The second and additional calls of `pysr` will be significantly
|
46 |
+
faster in startup time, since the first call to Julia will compile
|
47 |
+
and cache functions from the symbolic regression backend.
|
48 |
+
|
49 |
One can also use `best_tex` to get the LaTeX form,
|
50 |
or `best_callable` to get a function you can call.
|
51 |
This uses a score which balances complexity and error;
|
environment.yml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: test
|
2 |
+
channels:
|
3 |
+
- conda-forge
|
4 |
+
- defaults
|
5 |
+
dependencies:
|
6 |
+
- sympy
|
7 |
+
- pandas
|
8 |
+
- numpy
|
9 |
+
- scikit-learn
|
10 |
+
- setuptools
|
11 |
+
- pip
|
12 |
+
- pip:
|
13 |
+
- julia
|
pysr/__init__.py
CHANGED
@@ -1,4 +1,13 @@
|
|
1 |
-
from .sr import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from .feynman_problems import Problem, FeynmanProblem
|
3 |
from .export_jax import sympy2jax
|
4 |
from .export_torch import sympy2torch
|
|
|
1 |
+
from .sr import (
|
2 |
+
pysr,
|
3 |
+
get_hof,
|
4 |
+
best,
|
5 |
+
best_tex,
|
6 |
+
best_callable,
|
7 |
+
best_row,
|
8 |
+
install,
|
9 |
+
silence_julia_warning,
|
10 |
+
)
|
11 |
from .feynman_problems import Problem, FeynmanProblem
|
12 |
from .export_jax import sympy2jax
|
13 |
from .export_torch import sympy2torch
|
pysr/feynman_problems.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import numpy as np
|
2 |
import csv
|
3 |
-
import traceback
|
4 |
from .sr import pysr, best
|
5 |
from pathlib import Path
|
6 |
from functools import partial
|
@@ -80,20 +79,14 @@ def mk_problems(first=100, gen=False, dp=500, data_dir=FEYNMAN_DATASET):
|
|
80 |
"""
|
81 |
ret = []
|
82 |
with open(data_dir) as csvfile:
|
83 |
-
ind = 0
|
84 |
reader = csv.DictReader(csvfile)
|
85 |
for i, row in enumerate(reader):
|
86 |
-
if
|
87 |
break
|
88 |
if row["Filename"] == "":
|
89 |
continue
|
90 |
-
|
91 |
-
|
92 |
-
ret.append(p)
|
93 |
-
except Exception as e:
|
94 |
-
traceback.print_exc()
|
95 |
-
print(f"FAILED ON ROW {i} with {e}")
|
96 |
-
ind += 1
|
97 |
return ret
|
98 |
|
99 |
|
|
|
1 |
import numpy as np
|
2 |
import csv
|
|
|
3 |
from .sr import pysr, best
|
4 |
from pathlib import Path
|
5 |
from functools import partial
|
|
|
79 |
"""
|
80 |
ret = []
|
81 |
with open(data_dir) as csvfile:
|
|
|
82 |
reader = csv.DictReader(csvfile)
|
83 |
for i, row in enumerate(reader):
|
84 |
+
if i > first:
|
85 |
break
|
86 |
if row["Filename"] == "":
|
87 |
continue
|
88 |
+
p = FeynmanProblem(row, gen=gen, dp=dp)
|
89 |
+
ret.append(p)
|
|
|
|
|
|
|
|
|
|
|
90 |
return ret
|
91 |
|
92 |
|
pysr/sr.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
|
4 |
-
from collections import namedtuple
|
5 |
-
import pathlib
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import sympy
|
9 |
-
from sympy import sympify,
|
10 |
import subprocess
|
11 |
import tempfile
|
12 |
import shutil
|
@@ -15,6 +12,26 @@ from datetime import datetime
|
|
15 |
import warnings
|
16 |
from multiprocessing import cpu_count
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
global_state = dict(
|
19 |
equation_file="hall_of_fame.csv",
|
20 |
n_features=None,
|
@@ -27,8 +44,11 @@ global_state = dict(
|
|
27 |
multioutput=False,
|
28 |
nout=1,
|
29 |
selection=None,
|
|
|
30 |
)
|
31 |
|
|
|
|
|
32 |
sympy_mappings = {
|
33 |
"div": lambda x, y: x / y,
|
34 |
"mult": lambda x, y: x * y,
|
@@ -99,7 +119,6 @@ def pysr(
|
|
99 |
weightRandomize=1,
|
100 |
weightSimplify=0.01,
|
101 |
perturbationFactor=1.0,
|
102 |
-
timeout=None,
|
103 |
extra_sympy_mappings=None,
|
104 |
extra_torch_mappings=None,
|
105 |
extra_jax_mappings=None,
|
@@ -118,9 +137,7 @@ def pysr(
|
|
118 |
useFrequency=True,
|
119 |
tempdir=None,
|
120 |
delete_tempfiles=True,
|
121 |
-
julia_optimization=3,
|
122 |
julia_project=None,
|
123 |
-
user_input=True,
|
124 |
update=True,
|
125 |
temp_equation_file=False,
|
126 |
output_jax_format=False,
|
@@ -135,6 +152,7 @@ def pysr(
|
|
135 |
Xresampled=None,
|
136 |
precision=32,
|
137 |
multithreading=None,
|
|
|
138 |
):
|
139 |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|
140 |
Note: most default parameters have been tuned over several example
|
@@ -201,8 +219,6 @@ def pysr(
|
|
201 |
:type weightRandomize: float
|
202 |
:param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
|
203 |
:type weightSimplify: float
|
204 |
-
:param timeout: Time in seconds to timeout search
|
205 |
-
:type timeout: float
|
206 |
:param equation_file: Where to save the files (.csv separated by |)
|
207 |
:type equation_file: str
|
208 |
:param verbosity: What verbosity level to use. 0 means minimal print statements.
|
@@ -229,16 +245,12 @@ def pysr(
|
|
229 |
:type constraints: dict
|
230 |
:param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
|
231 |
:type useFrequency: bool
|
232 |
-
:param julia_optimization: Optimization level (0, 1, 2, 3)
|
233 |
-
:type julia_optimization: int
|
234 |
:param tempdir: directory for the temporary files
|
235 |
:type tempdir: str/None
|
236 |
:param delete_tempfiles: whether to delete the temporary files after finishing
|
237 |
:type delete_tempfiles: bool
|
238 |
:param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install.
|
239 |
:type julia_project: str/None
|
240 |
-
:param user_input: Whether to ask for user input or not for installing (to be used for automated scripts). Will choose to install when asked.
|
241 |
-
:type user_input: bool
|
242 |
:param update: Whether to automatically update Julia packages.
|
243 |
:type update: bool
|
244 |
:param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
|
@@ -257,9 +269,13 @@ def pysr(
|
|
257 |
:type precision: int
|
258 |
:param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
|
259 |
:type multithreading: bool
|
|
|
|
|
260 |
:returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output.
|
261 |
:type: pd.DataFrame/list
|
262 |
"""
|
|
|
|
|
263 |
if binary_operators is None:
|
264 |
binary_operators = "+ * - /".split(" ")
|
265 |
if unary_operators is None:
|
@@ -275,6 +291,13 @@ def pysr(
|
|
275 |
# or procs is set to 0 (serial mode).
|
276 |
multithreading = procs != 0
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
buffer_available = "buffer" in sys.stdout.__dir__()
|
279 |
|
280 |
if progress is not None:
|
@@ -324,7 +347,6 @@ def pysr(
|
|
324 |
weights,
|
325 |
y,
|
326 |
)
|
327 |
-
_check_for_julia_installation()
|
328 |
|
329 |
if len(X) > 10000 and not batching:
|
330 |
warnings.warn(
|
@@ -377,436 +399,206 @@ def pysr(
|
|
377 |
else:
|
378 |
X, y = _denoise(X, y, Xresampled=Xresampled)
|
379 |
|
380 |
-
|
381 |
-
X=X,
|
382 |
-
y=y,
|
383 |
-
weights=weights,
|
384 |
-
alpha=alpha,
|
385 |
-
annealing=annealing,
|
386 |
-
batchSize=batchSize,
|
387 |
-
batching=batching,
|
388 |
-
binary_operators=binary_operators,
|
389 |
-
fast_cycle=fast_cycle,
|
390 |
-
fractionReplaced=fractionReplaced,
|
391 |
-
ncyclesperiteration=ncyclesperiteration,
|
392 |
-
niterations=niterations,
|
393 |
-
npop=npop,
|
394 |
-
topn=topn,
|
395 |
-
verbosity=verbosity,
|
396 |
-
progress=progress,
|
397 |
-
update=update,
|
398 |
-
julia_optimization=julia_optimization,
|
399 |
-
timeout=timeout,
|
400 |
-
fractionReplacedHof=fractionReplacedHof,
|
401 |
-
hofMigration=hofMigration,
|
402 |
-
maxdepth=maxdepth,
|
403 |
-
maxsize=maxsize,
|
404 |
-
migration=migration,
|
405 |
-
optimizer_algorithm=optimizer_algorithm,
|
406 |
-
optimizer_nrestarts=optimizer_nrestarts,
|
407 |
-
optimize_probability=optimize_probability,
|
408 |
-
optimizer_iterations=optimizer_iterations,
|
409 |
-
parsimony=parsimony,
|
410 |
-
perturbationFactor=perturbationFactor,
|
411 |
-
populations=populations,
|
412 |
-
procs=procs,
|
413 |
-
shouldOptimizeConstants=shouldOptimizeConstants,
|
414 |
-
unary_operators=unary_operators,
|
415 |
-
useFrequency=useFrequency,
|
416 |
-
use_custom_variable_names=use_custom_variable_names,
|
417 |
-
variable_names=variable_names,
|
418 |
-
warmupMaxsizeBy=warmupMaxsizeBy,
|
419 |
-
weightAddNode=weightAddNode,
|
420 |
-
weightDeleteNode=weightDeleteNode,
|
421 |
-
weightDoNothing=weightDoNothing,
|
422 |
-
weightInsertNode=weightInsertNode,
|
423 |
-
weightMutateConstant=weightMutateConstant,
|
424 |
-
weightMutateOperator=weightMutateOperator,
|
425 |
-
weightRandomize=weightRandomize,
|
426 |
-
weightSimplify=weightSimplify,
|
427 |
-
constraints=constraints,
|
428 |
-
extra_sympy_mappings=extra_sympy_mappings,
|
429 |
-
extra_jax_mappings=extra_jax_mappings,
|
430 |
-
extra_torch_mappings=extra_torch_mappings,
|
431 |
-
julia_project=julia_project,
|
432 |
-
loss=loss,
|
433 |
-
output_jax_format=output_jax_format,
|
434 |
-
output_torch_format=output_torch_format,
|
435 |
-
selection=selection,
|
436 |
-
multioutput=multioutput,
|
437 |
-
nout=nout,
|
438 |
-
tournament_selection_n=tournament_selection_n,
|
439 |
-
tournament_selection_p=tournament_selection_p,
|
440 |
-
denoise=denoise,
|
441 |
-
precision=precision,
|
442 |
-
multithreading=multithreading,
|
443 |
-
)
|
444 |
|
445 |
-
|
446 |
|
447 |
if temp_equation_file:
|
448 |
-
equation_file =
|
449 |
elif equation_file is None:
|
450 |
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
|
451 |
equation_file = "hall_of_fame_" + date_time + ".csv"
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
kwargs["need_install"] = False
|
462 |
-
|
463 |
-
if not (manifest_filepath).is_file():
|
464 |
-
kwargs["need_install"] = (not user_input) or _yesno(
|
465 |
-
"I will install Julia packages using PySR's Project.toml file. OK?"
|
466 |
-
)
|
467 |
-
if kwargs["need_install"]:
|
468 |
-
print("OK. I will install at launch.")
|
469 |
-
assert update
|
470 |
-
|
471 |
-
kwargs["def_hyperparams"] = _create_inline_operators(**kwargs)
|
472 |
-
|
473 |
-
_handle_constraints(**kwargs)
|
474 |
-
|
475 |
-
kwargs["constraints_str"] = _make_constraints_str(**kwargs)
|
476 |
-
kwargs["def_hyperparams"] = _make_hyperparams_julia_str(**kwargs)
|
477 |
-
kwargs["def_datasets"] = _make_datasets_julia_str(**kwargs)
|
478 |
-
|
479 |
-
_create_julia_files(**kwargs)
|
480 |
-
_final_pysr_process(**kwargs)
|
481 |
-
_set_globals(**kwargs)
|
482 |
-
|
483 |
-
equations = get_hof(**kwargs)
|
484 |
-
|
485 |
-
if delete_tempfiles:
|
486 |
-
shutil.rmtree(kwargs["tmpdir"])
|
487 |
-
|
488 |
-
return equations
|
489 |
-
|
490 |
-
|
491 |
-
def _set_globals(X, **kwargs):
|
492 |
-
global global_state
|
493 |
-
|
494 |
-
global_state["n_features"] = X.shape[1]
|
495 |
-
for key, value in kwargs.items():
|
496 |
-
if key in global_state:
|
497 |
-
global_state[key] = value
|
498 |
-
|
499 |
-
|
500 |
-
def _final_pysr_process(
|
501 |
-
julia_optimization, runfile_filename, timeout, multithreading, procs, **kwargs
|
502 |
-
):
|
503 |
-
command = [
|
504 |
-
"julia",
|
505 |
-
f"-O{julia_optimization:d}",
|
506 |
-
]
|
507 |
-
|
508 |
-
if multithreading:
|
509 |
-
command.append("--threads")
|
510 |
-
command.append(f"{procs}")
|
511 |
-
|
512 |
-
command.append(str(runfile_filename))
|
513 |
-
if timeout is not None:
|
514 |
-
command = ["timeout", f"{timeout}"] + command
|
515 |
-
_cmd_runner(command, **kwargs)
|
516 |
|
|
|
|
|
517 |
|
518 |
-
def _cmd_runner(command, progress, **kwargs):
|
519 |
-
if kwargs["verbosity"] > 0:
|
520 |
-
print("Running on", " ".join(command))
|
521 |
-
process = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=-1)
|
522 |
try:
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
break
|
527 |
-
decoded_line = line.decode("utf-8")
|
528 |
-
if progress:
|
529 |
-
decoded_line = (
|
530 |
-
decoded_line.replace("\\033[K", "\033[K")
|
531 |
-
.replace("\\033[1A", "\033[1A")
|
532 |
-
.replace("\\033[1B", "\033[1B")
|
533 |
-
.replace("\\r", "\r")
|
534 |
-
.encode(sys.stdout.encoding, errors="replace")
|
535 |
-
)
|
536 |
-
sys.stdout.buffer.write(decoded_line)
|
537 |
-
sys.stdout.flush()
|
538 |
-
else:
|
539 |
-
print(decoded_line, end="")
|
540 |
-
|
541 |
-
process.stdout.close()
|
542 |
-
process.wait()
|
543 |
-
except KeyboardInterrupt:
|
544 |
-
print("Killing process... will return when done.")
|
545 |
-
process.kill()
|
546 |
-
|
547 |
-
|
548 |
-
def _create_julia_files(
|
549 |
-
dataset_filename,
|
550 |
-
def_datasets,
|
551 |
-
hyperparam_filename,
|
552 |
-
def_hyperparams,
|
553 |
-
niterations,
|
554 |
-
runfile_filename,
|
555 |
-
julia_project,
|
556 |
-
procs,
|
557 |
-
weights,
|
558 |
-
X,
|
559 |
-
variable_names,
|
560 |
-
pkg_directory,
|
561 |
-
need_install,
|
562 |
-
update,
|
563 |
-
multithreading,
|
564 |
-
**kwargs,
|
565 |
-
):
|
566 |
-
with open(hyperparam_filename, "w") as f:
|
567 |
-
print(def_hyperparams, file=f)
|
568 |
-
with open(dataset_filename, "w") as f:
|
569 |
-
print(def_datasets, file=f)
|
570 |
-
with open(runfile_filename, "w") as f:
|
571 |
-
if julia_project is None:
|
572 |
-
julia_project = pkg_directory
|
573 |
-
else:
|
574 |
-
julia_project = Path(julia_project)
|
575 |
-
print(f"import Pkg", file=f)
|
576 |
-
print(f'Pkg.activate("{_escape_filename(julia_project)}")', file=f)
|
577 |
-
if need_install:
|
578 |
-
print(f"Pkg.instantiate()", file=f)
|
579 |
-
print("Pkg.update()", file=f)
|
580 |
-
print("Pkg.precompile()", file=f)
|
581 |
-
elif update:
|
582 |
-
print(f"Pkg.update()", file=f)
|
583 |
-
print(f"using SymbolicRegression", file=f)
|
584 |
-
print(f'include("{_escape_filename(hyperparam_filename)}")', file=f)
|
585 |
-
print(f'include("{_escape_filename(dataset_filename)}")', file=f)
|
586 |
-
if len(variable_names) == 0:
|
587 |
-
varMap = "[" + ",".join([f'"x{i}"' for i in range(X.shape[1])]) + "]"
|
588 |
-
else:
|
589 |
-
varMap = (
|
590 |
-
"[" + ",".join(['"' + vname + '"' for vname in variable_names]) + "]"
|
591 |
-
)
|
592 |
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
|
606 |
-
def _make_datasets_julia_str(
|
607 |
-
X,
|
608 |
-
X_filename,
|
609 |
-
weights,
|
610 |
-
weights_filename,
|
611 |
-
y,
|
612 |
-
y_filename,
|
613 |
-
multioutput,
|
614 |
-
precision,
|
615 |
-
**kwargs,
|
616 |
-
):
|
617 |
-
def_datasets = """using DelimitedFiles"""
|
618 |
-
julia_dtype = {16: "Float16", 32: "Float32", 64: "Float64"}[precision]
|
619 |
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[precision]
|
620 |
|
621 |
-
np.
|
622 |
-
if
|
623 |
-
np.
|
624 |
else:
|
625 |
-
|
626 |
-
|
627 |
if weights is not None:
|
628 |
-
if
|
629 |
-
np.
|
630 |
else:
|
631 |
-
np.
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
|
637 |
-
|
638 |
-
X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
|
647 |
-
if
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
else:
|
652 |
-
def_datasets += f"""
|
653 |
-
weights = readdlm("{_escape_filename(weights_filename)}", ',', {julia_dtype}, '\\n')[:, 1]"""
|
654 |
-
return def_datasets
|
655 |
|
656 |
|
657 |
-
def
|
|
|
658 |
X,
|
659 |
-
alpha,
|
660 |
-
annealing,
|
661 |
-
batchSize,
|
662 |
-
batching,
|
663 |
-
binary_operators,
|
664 |
-
constraints_str,
|
665 |
-
def_hyperparams,
|
666 |
equation_file,
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
npop,
|
678 |
-
parsimony,
|
679 |
-
perturbationFactor,
|
680 |
-
populations,
|
681 |
-
shouldOptimizeConstants,
|
682 |
-
unary_operators,
|
683 |
-
useFrequency,
|
684 |
-
warmupMaxsizeBy,
|
685 |
-
weightAddNode,
|
686 |
-
ncyclesperiteration,
|
687 |
-
fractionReplaced,
|
688 |
-
topn,
|
689 |
-
verbosity,
|
690 |
-
progress,
|
691 |
-
loss,
|
692 |
-
weightDeleteNode,
|
693 |
-
weightDoNothing,
|
694 |
-
weightInsertNode,
|
695 |
-
weightMutateConstant,
|
696 |
-
weightMutateOperator,
|
697 |
-
weightRandomize,
|
698 |
-
weightSimplify,
|
699 |
-
tournament_selection_n,
|
700 |
-
tournament_selection_p,
|
701 |
-
**kwargs,
|
702 |
):
|
703 |
-
|
704 |
-
term_width = shutil.get_terminal_size().columns
|
705 |
-
except:
|
706 |
-
_, term_width = subprocess.check_output(["stty", "size"]).split()
|
707 |
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
cube=SymbolicRegression.cube
|
721 |
-
pow=(^)
|
722 |
-
div=(/)
|
723 |
-
log_abs=SymbolicRegression.log_abs
|
724 |
-
log2_abs=SymbolicRegression.log2_abs
|
725 |
-
log10_abs=SymbolicRegression.log10_abs
|
726 |
-
log1p_abs=SymbolicRegression.log1p_abs
|
727 |
-
acosh_abs=SymbolicRegression.acosh_abs
|
728 |
-
atanh_clip=SymbolicRegression.atanh_clip
|
729 |
-
sqrt_abs=SymbolicRegression.sqrt_abs
|
730 |
-
neg=SymbolicRegression.neg
|
731 |
-
greater=SymbolicRegression.greater
|
732 |
-
relu=SymbolicRegression.relu
|
733 |
-
logical_or=SymbolicRegression.logical_or
|
734 |
-
logical_and=SymbolicRegression.logical_and
|
735 |
-
_custom_loss = {loss}
|
736 |
-
|
737 |
-
options = SymbolicRegression.Options(binary_operators={'(' + tuple_fix(binary_operators) + ')'},
|
738 |
-
unary_operators={'(' + tuple_fix(unary_operators) + ')'},
|
739 |
-
{constraints_str}
|
740 |
-
parsimony={parsimony:f}f0,
|
741 |
-
loss=_custom_loss,
|
742 |
-
alpha={alpha:f}f0,
|
743 |
-
maxsize={maxsize:d},
|
744 |
-
maxdepth={maxdepth:d},
|
745 |
-
fast_cycle={'true' if fast_cycle else 'false'},
|
746 |
-
migration={'true' if migration else 'false'},
|
747 |
-
hofMigration={'true' if hofMigration else 'false'},
|
748 |
-
fractionReplacedHof={fractionReplacedHof}f0,
|
749 |
-
shouldOptimizeConstants={'true' if shouldOptimizeConstants else 'false'},
|
750 |
-
hofFile="{_escape_filename(equation_file)}",
|
751 |
-
npopulations={populations:d},
|
752 |
-
optimizer_algorithm="{optimizer_algorithm}",
|
753 |
-
optimizer_nrestarts={optimizer_nrestarts:d},
|
754 |
-
optimize_probability={optimize_probability:f}f0,
|
755 |
-
optimizer_iterations={optimizer_iterations:d},
|
756 |
-
perturbationFactor={perturbationFactor:f}f0,
|
757 |
-
annealing={"true" if annealing else "false"},
|
758 |
-
batching={"true" if batching else "false"},
|
759 |
-
batchSize={min([batchSize, len(X)]) if batching else len(X):d},
|
760 |
-
mutationWeights=[
|
761 |
-
{weightMutateConstant:f},
|
762 |
-
{weightMutateOperator:f},
|
763 |
-
{weightAddNode:f},
|
764 |
-
{weightInsertNode:f},
|
765 |
-
{weightDeleteNode:f},
|
766 |
-
{weightSimplify:f},
|
767 |
-
{weightRandomize:f},
|
768 |
-
{weightDoNothing:f}
|
769 |
-
],
|
770 |
-
warmupMaxsizeBy={warmupMaxsizeBy:f}f0,
|
771 |
-
useFrequency={"true" if useFrequency else "false"},
|
772 |
-
npop={npop:d},
|
773 |
-
ns={tournament_selection_n:d},
|
774 |
-
probPickFirst={tournament_selection_p:f}f0,
|
775 |
-
ncyclesperiteration={ncyclesperiteration:d},
|
776 |
-
fractionReplaced={fractionReplaced:f}f0,
|
777 |
-
topn={topn:d},
|
778 |
-
verbosity=round(Int32, {verbosity:f}),
|
779 |
-
progress={'true' if progress else 'false'},
|
780 |
-
terminal_width={term_width:d}
|
781 |
-
"""
|
782 |
-
|
783 |
-
def_hyperparams += "\n)"
|
784 |
-
return def_hyperparams
|
785 |
-
|
786 |
-
|
787 |
-
def _make_constraints_str(binary_operators, constraints, unary_operators, **kwargs):
|
788 |
-
constraints_str = "una_constraints = ["
|
789 |
-
first = True
|
790 |
-
for op in unary_operators:
|
791 |
-
val = constraints[op]
|
792 |
-
if not first:
|
793 |
-
constraints_str += ", "
|
794 |
-
constraints_str += f"{val:d}"
|
795 |
-
first = False
|
796 |
-
constraints_str += """],
|
797 |
-
bin_constraints = ["""
|
798 |
-
first = True
|
799 |
-
for op in binary_operators:
|
800 |
-
tup = constraints[op]
|
801 |
-
if not first:
|
802 |
-
constraints_str += ", "
|
803 |
-
constraints_str += f"({tup[0]:d}, {tup[1]:d})"
|
804 |
-
first = False
|
805 |
-
constraints_str += "],"
|
806 |
-
return constraints_str
|
807 |
|
808 |
|
809 |
-
def _handle_constraints(binary_operators,
|
810 |
for op in unary_operators:
|
811 |
if op not in constraints:
|
812 |
constraints[op] = -1
|
@@ -829,14 +621,13 @@ def _handle_constraints(binary_operators, constraints, unary_operators, **kwargs
|
|
829 |
)
|
830 |
|
831 |
|
832 |
-
def _create_inline_operators(binary_operators, unary_operators
|
833 |
-
def_hyperparams = ""
|
834 |
for op_list in [binary_operators, unary_operators]:
|
835 |
for i, op in enumerate(op_list):
|
836 |
is_user_defined_operator = "(" in op
|
837 |
|
838 |
if is_user_defined_operator:
|
839 |
-
|
840 |
# Cut off from the first non-alphanumeric char:
|
841 |
first_non_char = [
|
842 |
j
|
@@ -845,7 +636,6 @@ def _create_inline_operators(binary_operators, unary_operators, **kwargs):
|
|
845 |
][0]
|
846 |
function_name = op[:first_non_char]
|
847 |
op_list[i] = function_name
|
848 |
-
return def_hyperparams
|
849 |
|
850 |
|
851 |
def _handle_feature_selection(
|
@@ -863,30 +653,6 @@ def _handle_feature_selection(
|
|
863 |
return X, variable_names, selection
|
864 |
|
865 |
|
866 |
-
def _set_paths(tempdir):
|
867 |
-
# System-independent paths
|
868 |
-
pkg_directory = Path(__file__).parents[1]
|
869 |
-
default_project_file = pkg_directory / "Project.toml"
|
870 |
-
tmpdir = Path(tempfile.mkdtemp(dir=tempdir))
|
871 |
-
hyperparam_filename = tmpdir / f"hyperparams.jl"
|
872 |
-
dataset_filename = tmpdir / f"dataset.jl"
|
873 |
-
runfile_filename = tmpdir / "runfile.jl"
|
874 |
-
X_filename = tmpdir / "X.csv"
|
875 |
-
y_filename = tmpdir / "y.csv"
|
876 |
-
weights_filename = tmpdir / "weights.csv"
|
877 |
-
return dict(
|
878 |
-
pkg_directory=pkg_directory,
|
879 |
-
default_project_file=default_project_file,
|
880 |
-
X_filename=X_filename,
|
881 |
-
dataset_filename=dataset_filename,
|
882 |
-
hyperparam_filename=hyperparam_filename,
|
883 |
-
runfile_filename=runfile_filename,
|
884 |
-
tmpdir=tmpdir,
|
885 |
-
weights_filename=weights_filename,
|
886 |
-
y_filename=y_filename,
|
887 |
-
)
|
888 |
-
|
889 |
-
|
890 |
def _check_assertions(
|
891 |
X,
|
892 |
binary_operators,
|
@@ -908,30 +674,13 @@ def _check_assertions(
|
|
908 |
assert len(variable_names) == X.shape[1]
|
909 |
|
910 |
|
911 |
-
def _check_for_julia_installation():
|
912 |
-
try:
|
913 |
-
process = subprocess.Popen(["julia", "-v"], stdout=subprocess.PIPE, bufsize=-1)
|
914 |
-
while True:
|
915 |
-
line = process.stdout.readline()
|
916 |
-
if not line:
|
917 |
-
break
|
918 |
-
process.stdout.close()
|
919 |
-
process.wait()
|
920 |
-
except FileNotFoundError:
|
921 |
-
|
922 |
-
raise RuntimeError(
|
923 |
-
f"Your current $PATH is: {os.environ['PATH']}\nPySR could not start julia. Make sure julia is installed and on your $PATH."
|
924 |
-
)
|
925 |
-
process.kill()
|
926 |
-
|
927 |
-
|
928 |
def run_feature_selection(X, y, select_k_features):
|
929 |
"""Use a gradient boosting tree regressor as a proxy for finding
|
930 |
the k most important features in X, returning indices for those
|
931 |
features as output."""
|
932 |
|
933 |
from sklearn.ensemble import RandomForestRegressor
|
934 |
-
from sklearn.feature_selection import SelectFromModel
|
935 |
|
936 |
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
|
937 |
clf.fit(X, y)
|
@@ -1068,7 +817,9 @@ def get_hof(
|
|
1068 |
cur_score = 0.0
|
1069 |
else:
|
1070 |
if curMSE > 0.0:
|
1071 |
-
cur_score = -np.log(curMSE / lastMSE) / (
|
|
|
|
|
1072 |
else:
|
1073 |
cur_score = np.inf
|
1074 |
|
@@ -1197,3 +948,56 @@ class CallableEquation:
|
|
1197 |
if self._selection is not None:
|
1198 |
return self._lambda(*X[:, self._selection].T)
|
1199 |
return self._lambda(*X.T)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import sympy
|
6 |
+
from sympy import sympify, lambdify
|
7 |
import subprocess
|
8 |
import tempfile
|
9 |
import shutil
|
|
|
12 |
import warnings
|
13 |
from multiprocessing import cpu_count
|
14 |
|
15 |
+
is_julia_warning_silenced = False
|
16 |
+
|
17 |
+
|
18 |
+
def install(julia_project=None):
|
19 |
+
import julia
|
20 |
+
|
21 |
+
julia.install()
|
22 |
+
|
23 |
+
julia_project = _get_julia_project(julia_project)
|
24 |
+
|
25 |
+
init_julia()
|
26 |
+
from julia import Pkg
|
27 |
+
|
28 |
+
Pkg.activate(f"{_escape_filename(julia_project)}")
|
29 |
+
Pkg.update()
|
30 |
+
Pkg.instantiate()
|
31 |
+
Pkg.precompile()
|
32 |
+
|
33 |
+
|
34 |
+
Main = None
|
35 |
global_state = dict(
|
36 |
equation_file="hall_of_fame.csv",
|
37 |
n_features=None,
|
|
|
44 |
multioutput=False,
|
45 |
nout=1,
|
46 |
selection=None,
|
47 |
+
raw_julia_output=None,
|
48 |
)
|
49 |
|
50 |
+
already_ran = False
|
51 |
+
|
52 |
sympy_mappings = {
|
53 |
"div": lambda x, y: x / y,
|
54 |
"mult": lambda x, y: x * y,
|
|
|
119 |
weightRandomize=1,
|
120 |
weightSimplify=0.01,
|
121 |
perturbationFactor=1.0,
|
|
|
122 |
extra_sympy_mappings=None,
|
123 |
extra_torch_mappings=None,
|
124 |
extra_jax_mappings=None,
|
|
|
137 |
useFrequency=True,
|
138 |
tempdir=None,
|
139 |
delete_tempfiles=True,
|
|
|
140 |
julia_project=None,
|
|
|
141 |
update=True,
|
142 |
temp_equation_file=False,
|
143 |
output_jax_format=False,
|
|
|
152 |
Xresampled=None,
|
153 |
precision=32,
|
154 |
multithreading=None,
|
155 |
+
**kwargs,
|
156 |
):
|
157 |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|
158 |
Note: most default parameters have been tuned over several example
|
|
|
219 |
:type weightRandomize: float
|
220 |
:param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
|
221 |
:type weightSimplify: float
|
|
|
|
|
222 |
:param equation_file: Where to save the files (.csv separated by |)
|
223 |
:type equation_file: str
|
224 |
:param verbosity: What verbosity level to use. 0 means minimal print statements.
|
|
|
245 |
:type constraints: dict
|
246 |
:param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
|
247 |
:type useFrequency: bool
|
|
|
|
|
248 |
:param tempdir: directory for the temporary files
|
249 |
:type tempdir: str/None
|
250 |
:param delete_tempfiles: whether to delete the temporary files after finishing
|
251 |
:type delete_tempfiles: bool
|
252 |
:param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install.
|
253 |
:type julia_project: str/None
|
|
|
|
|
254 |
:param update: Whether to automatically update Julia packages.
|
255 |
:type update: bool
|
256 |
:param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
|
|
|
269 |
:type precision: int
|
270 |
:param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
|
271 |
:type multithreading: bool
|
272 |
+
:param **kwargs: Other options passed to SymbolicRegression.Options, for example, if you modify SymbolicRegression.jl to include additional arguments.
|
273 |
+
:type **kwargs: dict
|
274 |
:returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output.
|
275 |
:type: pd.DataFrame/list
|
276 |
"""
|
277 |
+
global already_ran
|
278 |
+
|
279 |
if binary_operators is None:
|
280 |
binary_operators = "+ * - /".split(" ")
|
281 |
if unary_operators is None:
|
|
|
291 |
# or procs is set to 0 (serial mode).
|
292 |
multithreading = procs != 0
|
293 |
|
294 |
+
global Main
|
295 |
+
if Main is None:
|
296 |
+
if multithreading:
|
297 |
+
os.environ["JULIA_NUM_THREADS"] = str(procs)
|
298 |
+
|
299 |
+
Main = init_julia()
|
300 |
+
|
301 |
buffer_available = "buffer" in sys.stdout.__dir__()
|
302 |
|
303 |
if progress is not None:
|
|
|
347 |
weights,
|
348 |
y,
|
349 |
)
|
|
|
350 |
|
351 |
if len(X) > 10000 and not batching:
|
352 |
warnings.warn(
|
|
|
399 |
else:
|
400 |
X, y = _denoise(X, y, Xresampled=Xresampled)
|
401 |
|
402 |
+
julia_project = _get_julia_project(julia_project)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
+
tmpdir = Path(tempfile.mkdtemp(dir=tempdir))
|
405 |
|
406 |
if temp_equation_file:
|
407 |
+
equation_file = tmpdir / "hall_of_fame.csv"
|
408 |
elif equation_file is None:
|
409 |
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
|
410 |
equation_file = "hall_of_fame_" + date_time + ".csv"
|
411 |
|
412 |
+
_create_inline_operators(
|
413 |
+
binary_operators=binary_operators, unary_operators=unary_operators
|
414 |
+
)
|
415 |
+
_handle_constraints(
|
416 |
+
binary_operators=binary_operators,
|
417 |
+
unary_operators=unary_operators,
|
418 |
+
constraints=constraints,
|
419 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
+
una_constraints = [constraints[op] for op in unary_operators]
|
422 |
+
bin_constraints = [constraints[op] for op in binary_operators]
|
423 |
|
|
|
|
|
|
|
|
|
424 |
try:
|
425 |
+
term_width = shutil.get_terminal_size().columns
|
426 |
+
except:
|
427 |
+
_, term_width = subprocess.check_output(["stty", "size"]).split()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
+
if not already_ran:
|
430 |
+
from julia import Pkg
|
431 |
+
|
432 |
+
Pkg.activate(f"{_escape_filename(julia_project)}")
|
433 |
+
if update:
|
434 |
+
try:
|
435 |
+
Pkg.resolve()
|
436 |
+
except RuntimeError as e:
|
437 |
+
raise ImportError(
|
438 |
+
f"""
|
439 |
+
Required dependencies are not installed or built. Run the following code in the Python REPL:
|
440 |
+
|
441 |
+
>>> import pysr
|
442 |
+
>>> pysr.install()
|
443 |
+
|
444 |
+
Tried to activate project {julia_project} but failed."""
|
445 |
+
) from e
|
446 |
+
Main.eval("using SymbolicRegression")
|
447 |
+
|
448 |
+
Main.plus = Main.eval("(+)")
|
449 |
+
Main.sub = Main.eval("(-)")
|
450 |
+
Main.mult = Main.eval("(*)")
|
451 |
+
Main.pow = Main.eval("(^)")
|
452 |
+
Main.div = Main.eval("(/)")
|
453 |
+
|
454 |
+
Main.custom_loss = Main.eval(loss)
|
455 |
+
|
456 |
+
mutationWeights = [
|
457 |
+
float(weightMutateConstant),
|
458 |
+
float(weightMutateOperator),
|
459 |
+
float(weightAddNode),
|
460 |
+
float(weightInsertNode),
|
461 |
+
float(weightDeleteNode),
|
462 |
+
float(weightSimplify),
|
463 |
+
float(weightRandomize),
|
464 |
+
float(weightDoNothing),
|
465 |
+
]
|
466 |
|
467 |
+
options = Main.Options(
|
468 |
+
binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
|
469 |
+
unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
|
470 |
+
bin_constraints=bin_constraints,
|
471 |
+
una_constraints=una_constraints,
|
472 |
+
parsimony=float(parsimony),
|
473 |
+
loss=Main.custom_loss,
|
474 |
+
alpha=float(alpha),
|
475 |
+
maxsize=int(maxsize),
|
476 |
+
maxdepth=int(maxdepth),
|
477 |
+
fast_cycle=fast_cycle,
|
478 |
+
migration=migration,
|
479 |
+
hofMigration=hofMigration,
|
480 |
+
fractionReplacedHof=float(fractionReplacedHof),
|
481 |
+
shouldOptimizeConstants=shouldOptimizeConstants,
|
482 |
+
hofFile=_escape_filename(equation_file),
|
483 |
+
npopulations=int(populations),
|
484 |
+
optimizer_algorithm=optimizer_algorithm,
|
485 |
+
optimizer_nrestarts=int(optimizer_nrestarts),
|
486 |
+
optimize_probability=float(optimize_probability),
|
487 |
+
optimizer_iterations=int(optimizer_iterations),
|
488 |
+
perturbationFactor=float(perturbationFactor),
|
489 |
+
annealing=annealing,
|
490 |
+
batching=batching,
|
491 |
+
batchSize=int(min([batchSize, len(X)]) if batching else len(X)),
|
492 |
+
mutationWeights=mutationWeights,
|
493 |
+
warmupMaxsizeBy=float(warmupMaxsizeBy),
|
494 |
+
useFrequency=useFrequency,
|
495 |
+
npop=int(npop),
|
496 |
+
ns=int(tournament_selection_n),
|
497 |
+
probPickFirst=float(tournament_selection_p),
|
498 |
+
ncyclesperiteration=int(ncyclesperiteration),
|
499 |
+
fractionReplaced=float(fractionReplaced),
|
500 |
+
topn=int(topn),
|
501 |
+
verbosity=int(verbosity),
|
502 |
+
progress=progress,
|
503 |
+
terminal_width=int(term_width),
|
504 |
+
**kwargs,
|
505 |
+
)
|
506 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[precision]
|
508 |
|
509 |
+
Main.X = np.array(X, dtype=np_dtype).T
|
510 |
+
if len(y.shape) == 1:
|
511 |
+
Main.y = np.array(y, dtype=np_dtype)
|
512 |
else:
|
513 |
+
Main.y = np.array(y, dtype=np_dtype).T
|
|
|
514 |
if weights is not None:
|
515 |
+
if len(weights.shape) == 1:
|
516 |
+
Main.weights = np.array(weights, dtype=np_dtype)
|
517 |
else:
|
518 |
+
Main.weights = np.array(weights, dtype=np_dtype).T
|
519 |
+
else:
|
520 |
+
Main.weights = None
|
521 |
+
|
522 |
+
cprocs = 0 if multithreading else procs
|
523 |
+
|
524 |
+
raw_julia_output = Main.EquationSearch(
|
525 |
+
Main.X,
|
526 |
+
Main.y,
|
527 |
+
weights=Main.weights,
|
528 |
+
niterations=int(niterations),
|
529 |
+
varMap=variable_names,
|
530 |
+
options=options,
|
531 |
+
numprocs=int(cprocs),
|
532 |
+
multithreading=bool(multithreading),
|
533 |
+
)
|
534 |
|
535 |
+
_set_globals(
|
536 |
+
X=X,
|
537 |
+
equation_file=equation_file,
|
538 |
+
variable_names=variable_names,
|
539 |
+
extra_sympy_mappings=extra_sympy_mappings,
|
540 |
+
extra_torch_mappings=extra_torch_mappings,
|
541 |
+
extra_jax_mappings=extra_jax_mappings,
|
542 |
+
output_jax_format=output_jax_format,
|
543 |
+
output_torch_format=output_torch_format,
|
544 |
+
multioutput=multioutput,
|
545 |
+
nout=nout,
|
546 |
+
selection=selection,
|
547 |
+
raw_julia_output=raw_julia_output,
|
548 |
+
)
|
549 |
|
550 |
+
equations = get_hof(
|
551 |
+
equation_file=equation_file,
|
552 |
+
n_features=X.shape[1],
|
553 |
+
variable_names=variable_names,
|
554 |
+
output_jax_format=output_jax_format,
|
555 |
+
output_torch_format=output_torch_format,
|
556 |
+
selection=selection,
|
557 |
+
extra_sympy_mappings=extra_sympy_mappings,
|
558 |
+
extra_jax_mappings=extra_jax_mappings,
|
559 |
+
extra_torch_mappings=extra_torch_mappings,
|
560 |
+
multioutput=multioutput,
|
561 |
+
nout=nout,
|
562 |
+
)
|
563 |
|
564 |
+
if delete_tempfiles:
|
565 |
+
shutil.rmtree(tmpdir)
|
566 |
+
|
567 |
+
return equations
|
|
|
|
|
|
|
|
|
568 |
|
569 |
|
570 |
+
def _set_globals(
|
571 |
+
*,
|
572 |
X,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
equation_file,
|
574 |
+
variable_names,
|
575 |
+
extra_sympy_mappings,
|
576 |
+
extra_torch_mappings,
|
577 |
+
extra_jax_mappings,
|
578 |
+
output_jax_format,
|
579 |
+
output_torch_format,
|
580 |
+
multioutput,
|
581 |
+
nout,
|
582 |
+
selection,
|
583 |
+
raw_julia_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
):
|
585 |
+
global global_state
|
|
|
|
|
|
|
586 |
|
587 |
+
global_state["n_features"] = X.shape[1]
|
588 |
+
global_state["equation_file"] = equation_file
|
589 |
+
global_state["variable_names"] = variable_names
|
590 |
+
global_state["extra_sympy_mappings"] = extra_sympy_mappings
|
591 |
+
global_state["extra_torch_mappings"] = extra_torch_mappings
|
592 |
+
global_state["extra_jax_mappings"] = extra_jax_mappings
|
593 |
+
global_state["output_jax_format"] = output_jax_format
|
594 |
+
global_state["output_torch_format"] = output_torch_format
|
595 |
+
global_state["multioutput"] = multioutput
|
596 |
+
global_state["nout"] = nout
|
597 |
+
global_state["selection"] = selection
|
598 |
+
global_state["raw_julia_output"] = raw_julia_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
|
600 |
|
601 |
+
def _handle_constraints(binary_operators, unary_operators, constraints):
|
602 |
for op in unary_operators:
|
603 |
if op not in constraints:
|
604 |
constraints[op] = -1
|
|
|
621 |
)
|
622 |
|
623 |
|
624 |
+
def _create_inline_operators(binary_operators, unary_operators):
|
|
|
625 |
for op_list in [binary_operators, unary_operators]:
|
626 |
for i, op in enumerate(op_list):
|
627 |
is_user_defined_operator = "(" in op
|
628 |
|
629 |
if is_user_defined_operator:
|
630 |
+
Main.eval(op)
|
631 |
# Cut off from the first non-alphanumeric char:
|
632 |
first_non_char = [
|
633 |
j
|
|
|
636 |
][0]
|
637 |
function_name = op[:first_non_char]
|
638 |
op_list[i] = function_name
|
|
|
639 |
|
640 |
|
641 |
def _handle_feature_selection(
|
|
|
653 |
return X, variable_names, selection
|
654 |
|
655 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
def _check_assertions(
|
657 |
X,
|
658 |
binary_operators,
|
|
|
674 |
assert len(variable_names) == X.shape[1]
|
675 |
|
676 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
def run_feature_selection(X, y, select_k_features):
|
678 |
"""Use a gradient boosting tree regressor as a proxy for finding
|
679 |
the k most important features in X, returning indices for those
|
680 |
features as output."""
|
681 |
|
682 |
from sklearn.ensemble import RandomForestRegressor
|
683 |
+
from sklearn.feature_selection import SelectFromModel
|
684 |
|
685 |
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
|
686 |
clf.fit(X, y)
|
|
|
817 |
cur_score = 0.0
|
818 |
else:
|
819 |
if curMSE > 0.0:
|
820 |
+
cur_score = -np.log(curMSE / lastMSE) / (
|
821 |
+
curComplexity - lastComplexity
|
822 |
+
)
|
823 |
else:
|
824 |
cur_score = np.inf
|
825 |
|
|
|
948 |
if self._selection is not None:
|
949 |
return self._lambda(*X[:, self._selection].T)
|
950 |
return self._lambda(*X.T)
|
951 |
+
|
952 |
+
|
953 |
+
def _get_julia_project(julia_project):
|
954 |
+
pkg_directory = Path(__file__).parents[1]
|
955 |
+
if julia_project is None:
|
956 |
+
return pkg_directory
|
957 |
+
return Path(julia_project)
|
958 |
+
|
959 |
+
|
960 |
+
def silence_julia_warning():
|
961 |
+
global is_julia_warning_silenced
|
962 |
+
is_julia_warning_silenced = True
|
963 |
+
|
964 |
+
|
965 |
+
def init_julia():
|
966 |
+
"""Initialize julia binary, turning off compiled modules if needed."""
|
967 |
+
global is_julia_warning_silenced
|
968 |
+
from julia.core import JuliaInfo, UnsupportedPythonError
|
969 |
+
|
970 |
+
info = JuliaInfo.load(julia="julia")
|
971 |
+
if not info.is_pycall_built():
|
972 |
+
raise ImportError(
|
973 |
+
"""
|
974 |
+
Required dependencies are not installed or built. Run the following code in the Python REPL:
|
975 |
+
|
976 |
+
>>> import pysr
|
977 |
+
>>> pysr.install()"""
|
978 |
+
)
|
979 |
+
|
980 |
+
Main = None
|
981 |
+
try:
|
982 |
+
from julia import Main as _Main
|
983 |
+
|
984 |
+
Main = _Main
|
985 |
+
except UnsupportedPythonError:
|
986 |
+
if not is_julia_warning_silenced:
|
987 |
+
warnings.warn(
|
988 |
+
"""
|
989 |
+
Your Python version is statically linked to libpython. For example, this could be the python included with conda, or maybe your system's built-in python.
|
990 |
+
This will still work, but the precompilation cache for Julia will be turned off, which may result in slower startup times on the initial pysr() call.
|
991 |
+
|
992 |
+
To install a Python version that is dynamically linked to libpython, pyenv is recommended (https://github.com/pyenv/pyenv).
|
993 |
+
|
994 |
+
To silence this warning, you can run pysr.silence_julia_warning() after importing pysr."""
|
995 |
+
)
|
996 |
+
from julia.core import Julia
|
997 |
+
|
998 |
+
jl = Julia(compiled_modules=False)
|
999 |
+
from julia import Main as _Main
|
1000 |
+
|
1001 |
+
Main = _Main
|
1002 |
+
|
1003 |
+
return Main
|
requirements.txt
CHANGED
@@ -2,3 +2,4 @@ sympy
|
|
2 |
pandas
|
3 |
numpy
|
4 |
scikit_learn
|
|
|
|
2 |
pandas
|
3 |
numpy
|
4 |
scikit_learn
|
5 |
+
julia
|
setup.py
CHANGED
@@ -5,14 +5,14 @@ with open("README.md", "r") as fh:
|
|
5 |
|
6 |
setuptools.setup(
|
7 |
name="pysr",
|
8 |
-
version="0.
|
9 |
author="Miles Cranmer",
|
10 |
author_email="miles.cranmer@gmail.com",
|
11 |
description="Simple and efficient symbolic regression",
|
12 |
long_description=long_description,
|
13 |
long_description_content_type="text/markdown",
|
14 |
url="https://github.com/MilesCranmer/pysr",
|
15 |
-
install_requires=["numpy", "pandas", "sympy"],
|
16 |
packages=setuptools.find_packages(),
|
17 |
package_data={"pysr": ["../Project.toml", "../datasets/*"]},
|
18 |
include_package_data=False,
|
|
|
5 |
|
6 |
setuptools.setup(
|
7 |
name="pysr",
|
8 |
+
version="0.7.0a1",
|
9 |
author="Miles Cranmer",
|
10 |
author_email="miles.cranmer@gmail.com",
|
11 |
description="Simple and efficient symbolic regression",
|
12 |
long_description=long_description,
|
13 |
long_description_content_type="text/markdown",
|
14 |
url="https://github.com/MilesCranmer/pysr",
|
15 |
+
install_requires=["julia", "numpy", "pandas", "sympy"],
|
16 |
packages=setuptools.find_packages(),
|
17 |
package_data={"pysr": ["../Project.toml", "../datasets/*"]},
|
18 |
include_package_data=False,
|
test/test.py
CHANGED
@@ -13,7 +13,6 @@ class TestPipeline(unittest.TestCase):
|
|
13 |
self.default_test_kwargs = dict(
|
14 |
niterations=10,
|
15 |
populations=4,
|
16 |
-
user_input=False,
|
17 |
annealing=True,
|
18 |
useFrequency=False,
|
19 |
)
|
|
|
13 |
self.default_test_kwargs = dict(
|
14 |
niterations=10,
|
15 |
populations=4,
|
|
|
16 |
annealing=True,
|
17 |
useFrequency=False,
|
18 |
)
|
test/test_static_libpython_warning.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test that running PySR with static libpython raises a warning."""
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
import pysr
|
5 |
+
|
6 |
+
# Taken from https://stackoverflow.com/a/14463362/2689923
|
7 |
+
with warnings.catch_warnings(record=True) as warning_catcher:
|
8 |
+
warnings.simplefilter("always")
|
9 |
+
pysr.sr.init_julia()
|
10 |
+
|
11 |
+
assert len(warning_catcher) == 1
|
12 |
+
assert issubclass(warning_catcher[-1].category, UserWarning)
|
13 |
+
assert "static" in str(warning_catcher[-1].message)
|