MilesCranmer commited on
Commit
382662a
·
1 Parent(s): 6f3a331

Better defaults

Browse files
Files changed (3) hide show
  1. README.md +5 -0
  2. eureqa.jl +2 -1
  3. paralleleureqa.jl +24 -23
README.md CHANGED
@@ -54,3 +54,8 @@ weights = [8, 1, 1, 1]
54
  (for: 1. perturb constant, 2. mutate operator,
55
  3. append a node, 4. delete a subtree).
56
 
 
 
 
 
 
 
54
  (for: 1. perturb constant, 2. mutate operator,
55
  3. append a node, 4. delete a subtree).
56
 
57
+
58
+ # TODO
59
+
60
+ - Record hall of fame
61
+ - Optionally migrate the hall of fame, rather than current bests
eureqa.jl CHANGED
@@ -322,7 +322,8 @@ function iterate(
322
  prev = deepcopy(tree)
323
 
324
  mutationChoice = rand()
325
- weights = [8, 1, 1, 1, 2]
 
326
  weights /= sum(weights)
327
  cweights = cumsum(weights)
328
  n = countNodes(tree)
 
322
  prev = deepcopy(tree)
323
 
324
  mutationChoice = rand()
325
+ weight_for_constant = min(8, countConstants(tree))
326
+ weights = [weight_for_constant, 1, 1, 1, 2]
327
  weights /= sum(weights)
328
  cweights = cumsum(weights)
329
  n = countNodes(tree)
paralleleureqa.jl CHANGED
@@ -3,35 +3,36 @@ include("eureqa.jl")
3
  println("Lets try to learn (x2^2 + cos(x3)) using regularized evolution from scratch")
4
  const nthreads = Threads.nthreads()
5
  println("Running with $nthreads threads")
6
- const npop = 1000
7
  const annealing = true
8
- const niterations = 100
9
- const ncyclesperiteration = 30000
10
 
11
- # Generate random initial populations
12
- allPops = [Population(npop, 3) for j=1:nthreads]
13
- bestScore = Inf
14
- # Repeat this many evolutions; we collect and migrate the best
15
- # each time.
16
- for k=1:niterations
17
 
18
- # Spawn threads to run indepdent evolutions, then gather them
19
- @inbounds Threads.@threads for i=1:nthreads
20
- allPops[i] = run(allPops[i], ncyclesperiteration, annealing, verbose=500)
21
- end
22
 
23
- # Get best 10 models from each evolution. Copy because we re-assign later.
24
- bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members]))
25
- bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
26
- bestCurScore = bestPops.members[bestCurScoreIdx].score
27
- println(bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
28
 
29
- # Migration
30
- for j=1:nthreads
31
- for k in rand(1:npop, 50)
32
- # Copy in case one gets used twice
33
- allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
 
34
  end
35
  end
36
  end
37
 
 
 
3
  println("Lets try to learn (x2^2 + cos(x3)) using regularized evolution from scratch")
4
  const nthreads = Threads.nthreads()
5
  println("Running with $nthreads threads")
6
+ const npop = 300
7
  const annealing = true
8
+ const ncyclesperiteration = 3000
 
9
 
10
+ function fullRun(niterations::Integer)
11
+ # Generate random initial populations
12
+ allPops = [Population(npop, 3) for j=1:nthreads]
13
+ # Repeat this many evolutions; we collect and migrate the best
14
+ # each time.
15
+ for k=1:niterations
16
 
17
+ # Spawn threads to run indepdent evolutions, then gather them
18
+ @inbounds Threads.@threads for i=1:nthreads
19
+ allPops[i] = run(allPops[i], ncyclesperiteration, annealing, verbose=500)
20
+ end
21
 
22
+ # Get best 10 models from each evolution. Copy because we re-assign later.
23
+ bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members]))
24
+ bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
25
+ bestCurScore = bestPops.members[bestCurScoreIdx].score
26
+ println(bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
27
 
28
+ # Migration
29
+ for j=1:nthreads
30
+ for k in rand(1:npop, Integer(npop/2))
31
+ # Copy in case one gets used twice
32
+ allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
33
+ end
34
  end
35
  end
36
  end
37
 
38
+ fullRun(10)