Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
327e651
1
Parent(s):
651f56a
Create copy operation for nodes; faster than deepcopy
Browse files
README.md
CHANGED
@@ -147,14 +147,14 @@ pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
|
|
147 |
|
148 |
# TODO
|
149 |
|
150 |
-
- [ ] Write our own tree copy operation; deepcopy() is the slowest operation by far.
|
151 |
- [ ] Consider adding mutation for constant<->variable
|
152 |
- [ ] Use NN to generate weights over all probability distribution conditional on error and existing equation, and train on some randomly-generated equations
|
153 |
- [ ] Performance:
|
154 |
- [ ] Use an enum for functions instead of storing them?
|
155 |
- Current most expensive operations:
|
156 |
- [ ] Calculating the loss function - there is duplicate calculations happening.
|
157 |
-
- [
|
|
|
158 |
- [x] Hyperparameter tune
|
159 |
- [x] Create a benchmark for accuracy
|
160 |
- [x] Add interface for either defining an operation to learn, or loading in arbitrary dataset.
|
|
|
147 |
|
148 |
# TODO
|
149 |
|
|
|
150 |
- [ ] Consider adding mutation for constant<->variable
|
151 |
- [ ] Use NN to generate weights over all probability distribution conditional on error and existing equation, and train on some randomly-generated equations
|
152 |
- [ ] Performance:
|
153 |
- [ ] Use an enum for functions instead of storing them?
|
154 |
- Current most expensive operations:
|
155 |
- [ ] Calculating the loss function - there is duplicate calculations happening.
|
156 |
+
- [x] Declaration of the weights array every iteration
|
157 |
+
- [x] Write our own tree copy operation; deepcopy() is the slowest operation by far.
|
158 |
- [x] Hyperparameter tune
|
159 |
- [x] Create a benchmark for accuracy
|
160 |
- [x] Add interface for either defining an operation to learn, or loading in arbitrary dataset.
|
eureqa.jl
CHANGED
@@ -39,6 +39,17 @@ mutable struct Node
|
|
39 |
Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
|
40 |
end
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Evaluate a symbolic equation:
|
43 |
function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32
|
44 |
if tree.degree == 0
|
@@ -327,11 +338,11 @@ function iterate(
|
|
327 |
annealing::Bool=true
|
328 |
)::Node
|
329 |
prev = tree
|
330 |
-
tree =
|
331 |
|
332 |
mutationChoice = rand()
|
333 |
weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0
|
334 |
-
cur_weights =
|
335 |
cur_weights[1] *= weightAdjustmentMutateConstant
|
336 |
cur_weights /= sum(cur_weights)
|
337 |
cweights = cumsum(cur_weights)
|
@@ -361,7 +372,7 @@ function iterate(
|
|
361 |
probChange = exp(-delta/(T*alpha))
|
362 |
|
363 |
if isnan(afterLoss) || probChange < rand()
|
364 |
-
return
|
365 |
end
|
366 |
end
|
367 |
|
|
|
39 |
Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
|
40 |
end
|
41 |
|
42 |
+
# Copy an equation (faster than deepcopy)
|
43 |
+
function copyNode(tree::Node)::Node
|
44 |
+
if tree.degree == 0
|
45 |
+
return Node(tree.val)
|
46 |
+
elseif tree.degree == 1
|
47 |
+
return Node(tree.op, copyNode(tree.l))
|
48 |
+
else
|
49 |
+
return Node(tree.op, copyNode(tree.l), copyNode(tree.r))
|
50 |
+
end
|
51 |
+
end
|
52 |
+
|
53 |
# Evaluate a symbolic equation:
|
54 |
function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32
|
55 |
if tree.degree == 0
|
|
|
338 |
annealing::Bool=true
|
339 |
)::Node
|
340 |
prev = tree
|
341 |
+
tree = copyNode(tree)
|
342 |
|
343 |
mutationChoice = rand()
|
344 |
weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0
|
345 |
+
cur_weights = copy(mutationWeights) .* 1.0
|
346 |
cur_weights[1] *= weightAdjustmentMutateConstant
|
347 |
cur_weights /= sum(cur_weights)
|
348 |
cweights = cumsum(cur_weights)
|
|
|
372 |
probChange = exp(-delta/(T*alpha))
|
373 |
|
374 |
if isnan(afterLoss) || probChange < rand()
|
375 |
+
return copyNode(prev)
|
376 |
end
|
377 |
end
|
378 |
|