MilesCranmer commited on
Commit
130cc52
·
unverified ·
2 Parent(s): fb5f0a1 3fbca11

Merge pull request #564 from MilesCranmer/create-pull-request/patch

Browse files
.deepsource.toml DELETED
@@ -1,16 +0,0 @@
1
- version = 1
2
-
3
- test_patterns = ["test/*.py"]
4
-
5
- exclude_patterns = ["Project.toml"]
6
-
7
- [[analyzers]]
8
- name = "python"
9
- enabled = true
10
-
11
- [analyzers.meta]
12
- runtime_version = "3.x.x"
13
-
14
- [[transformers]]
15
- name = "black"
16
- enabled = true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -287,7 +287,7 @@ model = PySRRegressor(
287
  # ^ Higher precision calculations.
288
  warm_start=True,
289
  # ^ Start from where left off.
290
- turbo=True,
291
  # ^ Faster evaluation (experimental)
292
  julia_project=None,
293
  # ^ Can set to the path of a folder containing the
 
287
  # ^ Higher precision calculations.
288
  warm_start=True,
289
  # ^ Start from where left off.
290
+ bumper=True,
291
  # ^ Faster evaluation (experimental)
292
  julia_project=None,
293
  # ^ Can set to the path of a folder containing the
docs/tuning.md CHANGED
@@ -20,7 +20,7 @@ I run from IPython (Jupyter Notebooks don't work as well[^1]) on the head node o
20
  8. I typically don't use `maxdepth`, but if I do, I set it strictly, while also leaving a bit of room for exploration. e.g., if you want a final equation limited to a depth of `5`, you might set this to `6` or `7`, so that it has a bit of room to explore.
21
  9. Set `parsimony` equal to about the minimum loss you would expect, divided by 5-10. e.g., if you expect the final equation to have a loss of `0.001`, you might set `parsimony=0.0001`.
22
  10. Set `weight_optimize` to some larger value, maybe `0.001`. This is very important if `ncycles_per_iteration` is large, so that optimization happens more frequently.
23
- 11. Set `turbo` to `True`. This may or not work, if there's an error just turn it off (some operators are not SIMD-capable). If it does work, it should give you a nice 20% speedup.
24
  12. For final runs, after I have tuned everything, I typically set `niterations` to some very large value, and just let it run for a week until my job finishes (genetic algorithms tend not to converge, they can look like they settle down, but then find a new family of expression, and explore a new space). If I am satisfied with the current equations (which are visible either in the terminal or in the saved csv file), I quit the job early.
25
 
26
  Since I am running in IPython, I can just hit `q` and then `<enter>` to stop the job, tweak the hyperparameters, and then start the search again.
 
20
  8. I typically don't use `maxdepth`, but if I do, I set it strictly, while also leaving a bit of room for exploration. e.g., if you want a final equation limited to a depth of `5`, you might set this to `6` or `7`, so that it has a bit of room to explore.
21
  9. Set `parsimony` equal to about the minimum loss you would expect, divided by 5-10. e.g., if you expect the final equation to have a loss of `0.001`, you might set `parsimony=0.0001`.
22
  10. Set `weight_optimize` to some larger value, maybe `0.001`. This is very important if `ncycles_per_iteration` is large, so that optimization happens more frequently.
23
+ 11. Set `bumper` to `True`. This turns on bump allocation but is experimental. It should give you a nice 20% speedup.
24
  12. For final runs, after I have tuned everything, I typically set `niterations` to some very large value, and just let it run for a week until my job finishes (genetic algorithms tend not to converge, they can look like they settle down, but then find a new family of expression, and explore a new space). If I am satisfied with the current equations (which are visible either in the terminal or in the saved csv file), I quit the job early.
25
 
26
  Since I am running in IPython, I can just hit `q` and then `<enter>` to stop the job, tweak the hyperparameters, and then start the search again.
pysr/_cli/main.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import sys
2
  import unittest
3
  import warnings
@@ -52,7 +53,14 @@ TEST_OPTIONS = {"main", "jax", "torch", "cli", "dev", "startup"}
52
 
53
  @pysr.command("test")
54
  @click.argument("tests", nargs=1)
55
- def _tests(tests):
 
 
 
 
 
 
 
56
  """Run parts of the PySR test suite.
57
 
58
  Choose from main, jax, torch, cli, dev, and startup. You can give multiple tests, separated by commas.
@@ -78,11 +86,16 @@ def _tests(tests):
78
  loader = unittest.TestLoader()
79
  suite = unittest.TestSuite()
80
  for test_case in test_cases:
81
- suite.addTests(loader.loadTestsFromTestCase(test_case))
 
 
 
 
 
 
 
82
  runner = unittest.TextTestRunner()
83
  results = runner.run(suite)
84
- # Normally unittest would run this, but here we have
85
- # to do it manually to get the exit code.
86
 
87
  if not results.wasSuccessful():
88
  sys.exit(1)
 
1
+ import fnmatch
2
  import sys
3
  import unittest
4
  import warnings
 
53
 
54
  @pysr.command("test")
55
  @click.argument("tests", nargs=1)
56
+ @click.option(
57
+ "-k",
58
+ "expressions",
59
+ multiple=True,
60
+ type=str,
61
+ help="Filter expressions to select specific tests.",
62
+ )
63
+ def _tests(tests, expressions):
64
  """Run parts of the PySR test suite.
65
 
66
  Choose from main, jax, torch, cli, dev, and startup. You can give multiple tests, separated by commas.
 
86
  loader = unittest.TestLoader()
87
  suite = unittest.TestSuite()
88
  for test_case in test_cases:
89
+ loaded_tests = loader.loadTestsFromTestCase(test_case)
90
+ for test in loaded_tests:
91
+ if len(expressions) == 0 or any(
92
+ fnmatch.fnmatch(test.id(), "*" + expression + "*")
93
+ for expression in expressions
94
+ ):
95
+ suite.addTest(test)
96
+
97
  runner = unittest.TextTestRunner()
98
  results = runner.run(suite)
 
 
99
 
100
  if not results.wasSuccessful():
101
  sys.exit(1)
pysr/julia_extensions.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This file installs and loads extensions for SymbolicRegression."""
2
+
3
+ from .julia_import import jl
4
+
5
+
6
+ def load_required_packages(
7
+ *, turbo=False, bumper=False, enable_autodiff=False, cluster_manager=None
8
+ ):
9
+ if turbo:
10
+ load_package("LoopVectorization", "bdcacae8-1622-11e9-2a5c-532679323890")
11
+ if bumper:
12
+ load_package("Bumper", "8ce10254-0962-460f-a3d8-1f77fea1446e")
13
+ if enable_autodiff:
14
+ load_package("Zygote", "e88e6eb3-aa80-5325-afca-941959d7151f")
15
+ if cluster_manager is not None:
16
+ load_package("ClusterManagers", "34f1f09b-3a8b-5176-ab39-66d58a4d544e")
17
+
18
+
19
+ def load_package(package_name, uuid):
20
+ jl.seval(
21
+ f"""
22
+ try
23
+ using {package_name}
24
+ catch e
25
+ isa(e, ArgumentError) || throw(e)
26
+ using Pkg: Pkg
27
+ Pkg.add(name="{package_name}", uuid="{uuid}")
28
+ using {package_name}
29
+ end
30
+ """
31
+ )
32
+ return None
pysr/juliapkg.json CHANGED
@@ -3,19 +3,11 @@
3
  "packages": {
4
  "SymbolicRegression": {
5
  "uuid": "8254be44-1295-4e6a-a16d-46603ac705cb",
6
- "version": "=0.23.1"
7
- },
8
- "ClusterManagers": {
9
- "uuid": "34f1f09b-3a8b-5176-ab39-66d58a4d544e",
10
- "version": "0.4"
11
  },
12
  "Serialization": {
13
  "uuid": "9e88b42a-f829-5b0c-bbe9-9e923198166b",
14
  "version": "1"
15
- },
16
- "Zygote": {
17
- "uuid": "e88e6eb3-aa80-5325-afca-941959d7151f",
18
- "version": "0.6"
19
  }
20
  }
21
  }
 
3
  "packages": {
4
  "SymbolicRegression": {
5
  "uuid": "8254be44-1295-4e6a-a16d-46603ac705cb",
6
+ "version": "=0.24.0"
 
 
 
 
7
  },
8
  "Serialization": {
9
  "uuid": "9e88b42a-f829-5b0c-bbe9-9e923198166b",
10
  "version": "1"
 
 
 
 
11
  }
12
  }
13
  }
pysr/param_groupings.yml CHANGED
@@ -74,6 +74,7 @@
74
  - precision
75
  - fast_cycle
76
  - turbo
 
77
  - enable_autodiff
78
  - Determinism:
79
  - random_state
 
74
  - precision
75
  - fast_cycle
76
  - turbo
77
+ - bumper
78
  - enable_autodiff
79
  - Determinism:
80
  - random_state
pysr/sr.py CHANGED
@@ -1,4 +1,5 @@
1
  """Define the PySRRegressor scikit-learn interface."""
 
2
  import copy
3
  import os
4
  import pickle as pkl
@@ -32,6 +33,7 @@ from .export_numpy import sympy2numpy
32
  from .export_sympy import assert_valid_sympy_symbol, create_sympy_symbols, pysr2sympy
33
  from .export_torch import sympy2torch
34
  from .feature_selection import run_feature_selection
 
35
  from .julia_helpers import (
36
  PythonCall,
37
  _escape_filename,
@@ -482,6 +484,10 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
482
  search evaluation. Certain operators may not be supported.
483
  Does not support 16-bit precision floats.
484
  Default is `False`.
 
 
 
 
485
  precision : int
486
  What precision to use for the data. By default this is `32`
487
  (float32), but you can select `64` or `16` as well, giving
@@ -697,7 +703,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
697
  weight_do_nothing: float = 0.21,
698
  weight_mutate_constant: float = 0.048,
699
  weight_mutate_operator: float = 0.47,
700
- weight_swap_operands: float = 0.0,
701
  weight_randomize: float = 0.00023,
702
  weight_simplify: float = 0.0020,
703
  weight_optimize: float = 0.0,
@@ -725,6 +731,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
725
  batch_size: int = 50,
726
  fast_cycle: bool = False,
727
  turbo: bool = False,
 
728
  precision: int = 32,
729
  enable_autodiff: bool = False,
730
  random_state=None,
@@ -820,6 +827,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
820
  self.batch_size = batch_size
821
  self.fast_cycle = fast_cycle
822
  self.turbo = turbo
 
823
  self.precision = precision
824
  self.enable_autodiff = enable_autodiff
825
  self.random_state = random_state
@@ -1263,9 +1271,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1263
  f"PySR currently only supports the following optimizer algorithms: {VALID_OPTIMIZER_ALGORITHMS}"
1264
  )
1265
 
 
1266
  # 'Mutable' parameter validation
1267
- buffer_available = "buffer" in sys.stdout.__dir__()
1268
- # Params and their default values, if None is given:
1269
  default_param_mapping = {
1270
  "binary_operators": "+ * - /".split(" "),
1271
  "unary_operators": [],
@@ -1274,7 +1282,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1274
  "multithreading": self.procs != 0 and self.cluster_manager is None,
1275
  "batch_size": 1,
1276
  "update_verbosity": int(self.verbosity),
1277
- "progress": buffer_available,
1278
  }
1279
  packed_modified_params = {}
1280
  for parameter, default_value in default_param_mapping.items():
@@ -1293,7 +1301,11 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1293
  "`batch_size` has been increased to equal one."
1294
  )
1295
  parameter_value = 1
1296
- elif parameter == "progress" and not buffer_available:
 
 
 
 
1297
  warnings.warn(
1298
  "Note: it looks like you are running in Jupyter. "
1299
  "The progress bar will be turned off."
@@ -1605,6 +1617,13 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1605
  else "nothing"
1606
  )
1607
 
 
 
 
 
 
 
 
1608
  mutation_weights = SymbolicRegression.MutationWeights(
1609
  mutate_constant=self.weight_mutate_constant,
1610
  mutate_operator=self.weight_mutate_operator,
@@ -1646,15 +1665,16 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1646
  maxdepth=maxdepth,
1647
  fast_cycle=self.fast_cycle,
1648
  turbo=self.turbo,
 
1649
  enable_autodiff=self.enable_autodiff,
1650
  migration=self.migration,
1651
  hof_migration=self.hof_migration,
1652
  fraction_replaced_hof=self.fraction_replaced_hof,
1653
  should_simplify=self.should_simplify,
1654
  should_optimize_constants=self.should_optimize_constants,
1655
- warmup_maxsize_by=0.0
1656
- if self.warmup_maxsize_by is None
1657
- else self.warmup_maxsize_by,
1658
  use_frequency=self.use_frequency,
1659
  use_frequency_in_tournament=self.use_frequency_in_tournament,
1660
  adaptive_parsimony_scaling=self.adaptive_parsimony_scaling,
@@ -1736,9 +1756,11 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1736
  ),
1737
  y_variable_names=jl_y_variable_names,
1738
  X_units=jl_array(self.X_units_),
1739
- y_units=jl_array(self.y_units_)
1740
- if isinstance(self.y_units_, list)
1741
- else self.y_units_,
 
 
1742
  options=options,
1743
  numprocs=cprocs,
1744
  parallelism=parallelism,
 
1
  """Define the PySRRegressor scikit-learn interface."""
2
+
3
  import copy
4
  import os
5
  import pickle as pkl
 
33
  from .export_sympy import assert_valid_sympy_symbol, create_sympy_symbols, pysr2sympy
34
  from .export_torch import sympy2torch
35
  from .feature_selection import run_feature_selection
36
+ from .julia_extensions import load_required_packages
37
  from .julia_helpers import (
38
  PythonCall,
39
  _escape_filename,
 
484
  search evaluation. Certain operators may not be supported.
485
  Does not support 16-bit precision floats.
486
  Default is `False`.
487
+ bumper: bool
488
+ (Experimental) Whether to use Bumper.jl to speed up the search
489
+ evaluation. Does not support 16-bit precision floats.
490
+ Default is `False`.
491
  precision : int
492
  What precision to use for the data. By default this is `32`
493
  (float32), but you can select `64` or `16` as well, giving
 
703
  weight_do_nothing: float = 0.21,
704
  weight_mutate_constant: float = 0.048,
705
  weight_mutate_operator: float = 0.47,
706
+ weight_swap_operands: float = 0.1,
707
  weight_randomize: float = 0.00023,
708
  weight_simplify: float = 0.0020,
709
  weight_optimize: float = 0.0,
 
731
  batch_size: int = 50,
732
  fast_cycle: bool = False,
733
  turbo: bool = False,
734
+ bumper: bool = False,
735
  precision: int = 32,
736
  enable_autodiff: bool = False,
737
  random_state=None,
 
827
  self.batch_size = batch_size
828
  self.fast_cycle = fast_cycle
829
  self.turbo = turbo
830
+ self.bumper = bumper
831
  self.precision = precision
832
  self.enable_autodiff = enable_autodiff
833
  self.random_state = random_state
 
1271
  f"PySR currently only supports the following optimizer algorithms: {VALID_OPTIMIZER_ALGORITHMS}"
1272
  )
1273
 
1274
+ progress = self.progress
1275
  # 'Mutable' parameter validation
1276
+ # (Params and their default values, if None is given:)
 
1277
  default_param_mapping = {
1278
  "binary_operators": "+ * - /".split(" "),
1279
  "unary_operators": [],
 
1282
  "multithreading": self.procs != 0 and self.cluster_manager is None,
1283
  "batch_size": 1,
1284
  "update_verbosity": int(self.verbosity),
1285
+ "progress": progress,
1286
  }
1287
  packed_modified_params = {}
1288
  for parameter, default_value in default_param_mapping.items():
 
1301
  "`batch_size` has been increased to equal one."
1302
  )
1303
  parameter_value = 1
1304
+ elif (
1305
+ parameter == "progress"
1306
+ and parameter_value
1307
+ and "buffer" not in sys.stdout.__dir__()
1308
+ ):
1309
  warnings.warn(
1310
  "Note: it looks like you are running in Jupyter. "
1311
  "The progress bar will be turned off."
 
1617
  else "nothing"
1618
  )
1619
 
1620
+ load_required_packages(
1621
+ turbo=self.turbo,
1622
+ bumper=self.bumper,
1623
+ enable_autodiff=self.enable_autodiff,
1624
+ cluster_manager=cluster_manager,
1625
+ )
1626
+
1627
  mutation_weights = SymbolicRegression.MutationWeights(
1628
  mutate_constant=self.weight_mutate_constant,
1629
  mutate_operator=self.weight_mutate_operator,
 
1665
  maxdepth=maxdepth,
1666
  fast_cycle=self.fast_cycle,
1667
  turbo=self.turbo,
1668
+ bumper=self.bumper,
1669
  enable_autodiff=self.enable_autodiff,
1670
  migration=self.migration,
1671
  hof_migration=self.hof_migration,
1672
  fraction_replaced_hof=self.fraction_replaced_hof,
1673
  should_simplify=self.should_simplify,
1674
  should_optimize_constants=self.should_optimize_constants,
1675
+ warmup_maxsize_by=(
1676
+ 0.0 if self.warmup_maxsize_by is None else self.warmup_maxsize_by
1677
+ ),
1678
  use_frequency=self.use_frequency,
1679
  use_frequency_in_tournament=self.use_frequency_in_tournament,
1680
  adaptive_parsimony_scaling=self.adaptive_parsimony_scaling,
 
1756
  ),
1757
  y_variable_names=jl_y_variable_names,
1758
  X_units=jl_array(self.X_units_),
1759
+ y_units=(
1760
+ jl_array(self.y_units_)
1761
+ if isinstance(self.y_units_, list)
1762
+ else self.y_units_
1763
+ ),
1764
  options=options,
1765
  numprocs=cprocs,
1766
  parallelism=parallelism,
pysr/test/test.py CHANGED
@@ -58,16 +58,20 @@ class TestPipeline(unittest.TestCase):
58
  model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"])
59
  self.assertIn("c1", model.equations_.iloc[-1]["equation"])
60
 
61
- def test_linear_relation_weighted(self):
62
  y = self.X[:, 0]
63
  weights = np.ones_like(y)
64
  model = PySRRegressor(
65
  **self.default_test_kwargs,
66
  early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
 
67
  )
68
  model.fit(self.X, y, weights=weights)
69
  print(model.equations_)
70
  self.assertLessEqual(model.get_best()["loss"], 1e-4)
 
 
 
71
 
72
  def test_multiprocessing_turbo_custom_objective(self):
73
  rstate = np.random.RandomState(0)
@@ -97,7 +101,9 @@ class TestPipeline(unittest.TestCase):
97
  self.assertGreaterEqual(best_loss, 0.0)
98
 
99
  # Test options stored:
100
- self.assertEqual(model.julia_options_.turbo, True)
 
 
101
 
102
  def test_multiline_seval(self):
103
  # The user should be able to run multiple things in a single seval call:
@@ -128,7 +134,9 @@ class TestPipeline(unittest.TestCase):
128
  self.assertTrue(jl.typeof(test_state[1]).parameters[1] == jl.Float64)
129
 
130
  # Test options stored:
131
- self.assertEqual(model.julia_options_.turbo, False)
 
 
132
 
133
  def test_multioutput_custom_operator_quiet_custom_complexity(self):
134
  y = self.X[:, [0, 1]] ** 2
@@ -163,10 +171,6 @@ class TestPipeline(unittest.TestCase):
163
  self.assertLessEqual(mse1, 1e-4)
164
  self.assertLessEqual(mse2, 1e-4)
165
 
166
- bad_y = model.predict(self.X, index=[0, 0])
167
- bad_mse = np.average((bad_y - y) ** 2)
168
- self.assertGreater(bad_mse, 1e-4)
169
-
170
  def test_multioutput_weighted_with_callable_temp_equation(self):
171
  X = self.X.copy()
172
  y = X[:, [0, 1]] ** 2
@@ -1028,9 +1032,8 @@ class TestDimensionalConstraints(unittest.TestCase):
1028
  for i in range(2):
1029
  self.assertGreater(model.get_best()[i]["complexity"], 2)
1030
  self.assertLess(model.get_best()[i]["loss"], 1e-6)
1031
- self.assertGreater(
1032
- model.equations_[i].query("complexity <= 2").loss.min(), 1e-6
1033
- )
1034
 
1035
  def test_unit_checks(self):
1036
  """This just checks the number of units passed"""
@@ -1107,8 +1110,10 @@ class TestDimensionalConstraints(unittest.TestCase):
1107
  self.assertNotIn("x1", best["equation"])
1108
  self.assertIn("x2", best["equation"])
1109
  self.assertEqual(best["complexity"], 3)
1110
- self.assertEqual(model.equations_.iloc[0].complexity, 1)
1111
- self.assertGreater(model.equations_.iloc[0].loss, 1e-6)
 
 
1112
 
1113
  # With pkl file:
1114
  pkl_file = str(temp_dir / "equation_file.pkl")
@@ -1127,8 +1132,8 @@ class TestDimensionalConstraints(unittest.TestCase):
1127
 
1128
  # Try warm start, but with no units provided (should
1129
  # be a different dataset, and thus different result):
1130
- model.fit(X, y)
1131
  model.early_stop_condition = "(l, c) -> l < 1e-6 && c == 1"
 
1132
  self.assertEqual(model.equations_.iloc[0].complexity, 1)
1133
  self.assertLess(model.equations_.iloc[0].loss, 1e-6)
1134
 
 
58
  model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"])
59
  self.assertIn("c1", model.equations_.iloc[-1]["equation"])
60
 
61
+ def test_linear_relation_weighted_bumper(self):
62
  y = self.X[:, 0]
63
  weights = np.ones_like(y)
64
  model = PySRRegressor(
65
  **self.default_test_kwargs,
66
  early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
67
+ bumper=True,
68
  )
69
  model.fit(self.X, y, weights=weights)
70
  print(model.equations_)
71
  self.assertLessEqual(model.get_best()["loss"], 1e-4)
72
+ self.assertEqual(
73
+ jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.bumper), True
74
+ )
75
 
76
  def test_multiprocessing_turbo_custom_objective(self):
77
  rstate = np.random.RandomState(0)
 
101
  self.assertGreaterEqual(best_loss, 0.0)
102
 
103
  # Test options stored:
104
+ self.assertEqual(
105
+ jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), True
106
+ )
107
 
108
  def test_multiline_seval(self):
109
  # The user should be able to run multiple things in a single seval call:
 
134
  self.assertTrue(jl.typeof(test_state[1]).parameters[1] == jl.Float64)
135
 
136
  # Test options stored:
137
+ self.assertEqual(
138
+ jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), False
139
+ )
140
 
141
  def test_multioutput_custom_operator_quiet_custom_complexity(self):
142
  y = self.X[:, [0, 1]] ** 2
 
171
  self.assertLessEqual(mse1, 1e-4)
172
  self.assertLessEqual(mse2, 1e-4)
173
 
 
 
 
 
174
  def test_multioutput_weighted_with_callable_temp_equation(self):
175
  X = self.X.copy()
176
  y = X[:, [0, 1]] ** 2
 
1032
  for i in range(2):
1033
  self.assertGreater(model.get_best()[i]["complexity"], 2)
1034
  self.assertLess(model.get_best()[i]["loss"], 1e-6)
1035
+ simple_eqs = model.equations_[i].query("complexity <= 2")
1036
+ self.assertTrue(len(simple_eqs) == 0 or simple_eqs.loss.min() > 1e-6)
 
1037
 
1038
  def test_unit_checks(self):
1039
  """This just checks the number of units passed"""
 
1110
  self.assertNotIn("x1", best["equation"])
1111
  self.assertIn("x2", best["equation"])
1112
  self.assertEqual(best["complexity"], 3)
1113
+ self.assertTrue(
1114
+ model.equations_.iloc[0].complexity > 1
1115
+ or model.equations_.iloc[0].loss > 1e-6
1116
+ )
1117
 
1118
  # With pkl file:
1119
  pkl_file = str(temp_dir / "equation_file.pkl")
 
1132
 
1133
  # Try warm start, but with no units provided (should
1134
  # be a different dataset, and thus different result):
 
1135
  model.early_stop_condition = "(l, c) -> l < 1e-6 && c == 1"
1136
+ model.fit(X, y)
1137
  self.assertEqual(model.equations_.iloc[0].complexity, 1)
1138
  self.assertLess(model.equations_.iloc[0].loss, 1e-6)
1139
 
pysr/test/test_cli.py CHANGED
@@ -61,7 +61,8 @@ def get_runtests():
61
  tests, separated by commas.
62
 
63
  Options:
64
- --help Show this message and exit.
 
65
  """
66
  )
67
  result = self.cli_runner.invoke(pysr, ["test", "--help"])
 
61
  tests, separated by commas.
62
 
63
  Options:
64
+ -k TEXT Filter expressions to select specific tests.
65
+ --help Show this message and exit.
66
  """
67
  )
68
  result = self.cli_runner.invoke(pysr, ["test", "--help"])
pysr/test/test_nb.ipynb CHANGED
@@ -11,18 +11,6 @@
11
  "text": [
12
  "Detected Jupyter notebook. Loading juliacall extension. Set `PYSR_AUTOLOAD_EXTENSIONS=no` to disable.\n"
13
  ]
14
- },
15
- {
16
- "name": "stderr",
17
- "output_type": "stream",
18
- "text": [
19
- "Precompiling SymbolicRegression\n",
20
- "\u001b[32m ✓ \u001b[39mSymbolicRegression\n",
21
- " 1 dependency successfully precompiled in 26 seconds. 106 already precompiled.\n",
22
- "Precompiling SymbolicRegressionJSON3Ext\n",
23
- "\u001b[32m ✓ \u001b[39m\u001b[90mSymbolicRegression → SymbolicRegressionJSON3Ext\u001b[39m\n",
24
- " 1 dependency successfully precompiled in 2 seconds. 110 already precompiled.\n"
25
- ]
26
  }
27
  ],
28
  "source": [
@@ -143,14 +131,6 @@
143
  "execution_count": 7,
144
  "metadata": {},
145
  "outputs": [
146
- {
147
- "name": "stderr",
148
- "output_type": "stream",
149
- "text": [
150
- "/Users/mcranmer/PermaDocuments/SymbolicRegressionMonorepo/.venv/lib/python3.12/site-packages/pysr/sr.py:1297: UserWarning: Note: it looks like you are running in Jupyter. The progress bar will be turned off.\n",
151
- " warnings.warn(\n"
152
- ]
153
- },
154
  {
155
  "data": {
156
  "text/plain": [
@@ -166,13 +146,6 @@
166
  "model.fit(X, y)\n",
167
  "type(model.equations_)"
168
  ]
169
- },
170
- {
171
- "cell_type": "code",
172
- "execution_count": null,
173
- "metadata": {},
174
- "outputs": [],
175
- "source": []
176
  }
177
  ],
178
  "metadata": {
@@ -191,7 +164,7 @@
191
  "name": "python",
192
  "nbconvert_exporter": "python",
193
  "pygments_lexer": "ipython3",
194
- "version": "3.12.1"
195
  }
196
  },
197
  "nbformat": 4,
 
11
  "text": [
12
  "Detected Jupyter notebook. Loading juliacall extension. Set `PYSR_AUTOLOAD_EXTENSIONS=no` to disable.\n"
13
  ]
 
 
 
 
 
 
 
 
 
 
 
 
14
  }
15
  ],
16
  "source": [
 
131
  "execution_count": 7,
132
  "metadata": {},
133
  "outputs": [
 
 
 
 
 
 
 
 
134
  {
135
  "data": {
136
  "text/plain": [
 
146
  "model.fit(X, y)\n",
147
  "type(model.equations_)"
148
  ]
 
 
 
 
 
 
 
149
  }
150
  ],
151
  "metadata": {
 
164
  "name": "python",
165
  "nbconvert_exporter": "python",
166
  "pygments_lexer": "ipython3",
167
+ "version": "3.11.2"
168
  }
169
  },
170
  "nbformat": 4,