PySR / pysr /test /test_jax.py
MilesCranmer's picture
Force tests to import locally
a2fd8f3
raw
history blame
4.05 kB
import unittest
import numpy as np
import pandas as pd
import sympy
from functools import partial
from .. import sympy2jax, PySRRegressor
class TestJAX(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2jax(self):
from jax import numpy as jnp
from jax import random
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
key = random.PRNGKey(0)
X = random.normal(key, (1000, 2))
true = 1.0 * jnp.cos(X[:, 0]) + X[:, 1]
f, params = sympy2jax(cosx, [x, y, z])
self.assertTrue(jnp.all(jnp.isclose(f(X, params), true)).item())
def test_pipeline_pandas(self):
from jax import numpy as jnp
X = pd.DataFrame(np.random.randn(100, 10))
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
output_jax_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"Loss": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh(checkpoint_file="equation_file.csv")
jformat = model.jax()
np.testing.assert_almost_equal(
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
np.square(np.cos(X.values[:, 1])), # Select feature 1
decimal=3,
)
def test_pipeline(self):
from jax import numpy as jnp
X = np.random.randn(100, 10)
y = np.ones(X.shape[0])
model = PySRRegressor(progress=False, max_evals=10000, output_jax_format=True)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"Loss": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh(checkpoint_file="equation_file.csv")
jformat = model.jax()
np.testing.assert_almost_equal(
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
np.square(np.cos(X[:, 1])), # Select feature 1
decimal=3,
)
def test_feature_selection_custom_operators(self):
rstate = np.random.RandomState(0)
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
cos_approx = lambda x: 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720
y = X["k15"] ** 2 + 2 * cos_approx(X["k20"])
model = PySRRegressor(
progress=False,
unary_operators=["cos_approx(x) = 1 - x^2 / 2 + x^4 / 24 + x^6 / 720"],
select_k_features=3,
maxsize=10,
early_stop_condition=1e-5,
extra_sympy_mappings={"cos_approx": cos_approx},
extra_jax_mappings={
"cos_approx": "(lambda x: 1 - x**2 / 2 + x**4 / 24 + x**6 / 720)"
},
random_state=0,
deterministic=True,
procs=0,
multithreading=False,
)
np.random.seed(0)
model.fit(X.values, y.values)
f, parameters = model.jax().values()
np_prediction = model.predict
jax_prediction = partial(f, parameters=parameters)
np_output = np_prediction(X.values)
jax_output = jax_prediction(X.values)
np.testing.assert_almost_equal(y.values, np_output, decimal=3)
np.testing.assert_almost_equal(y.values, jax_output, decimal=3)
def runtests():
"""Run all tests in test_jax.py."""
loader = unittest.TestLoader()
suite = unittest.TestSuite()
suite.addTests(loader.loadTestsFromTestCase(TestJAX))
runner = unittest.TextTestRunner()
return runner.run(suite)