Spaces:
Running
Running
"""Start a hyperoptimization from a single node""" | |
import sys | |
import numpy as np | |
import pickle as pkl | |
import hyperopt | |
from hyperopt import hp, fmin, tpe, Trials | |
import eureqa | |
import time | |
import contextlib | |
import numpy as np | |
def temp_seed(seed): | |
state = np.random.get_state() | |
np.random.seed(seed) | |
try: | |
yield | |
finally: | |
np.random.set_state(state) | |
#Change the following code to your file | |
################################################################################ | |
TRIALS_FOLDER = 'trials' | |
NUMBER_TRIALS_PER_RUN = 1 | |
def run_trial(args): | |
"""Evaluate the model loss using the hyperparams in args | |
:args: A dictionary containing all hyperparameters | |
:returns: Dict with status and loss from cross-validation | |
""" | |
print("Running on", args) | |
for key in 'niterations npop'.split(' '): | |
args[key] = int(args[key]) | |
total_steps = 20*100*5000 | |
niterations = args['niterations'] | |
npop = args['npop'] | |
if niterations == 0 or npop == 0: | |
print("Bad parameters") | |
return {'status': 'ok', 'loss': np.inf} | |
args['ncyclesperiteration'] = int(total_steps / (niterations * npop)) | |
args['topn'] = 10 | |
args['parsimony'] = 1e-3 | |
args['annealing'] = True | |
if args['npop'] < 20 or args['ncyclesperiteration'] < 3: | |
print("Bad parameters") | |
return {'status': 'ok', 'loss': np.inf} | |
args['weightDoNothing'] = 1.0 | |
maxTime = 3*60 | |
ntrials = 2 | |
equation_file = f'.hall_of_fame_{np.random.rand():f}.csv' | |
with temp_seed(0): | |
X = np.random.randn(100, 5)*3 | |
eval_str = ["np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5", | |
"np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)", | |
"np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)", | |
"1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4", | |
"(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"] | |
print(f"Starting", str(args)) | |
try: | |
trials = [] | |
for i in range(1, 6): | |
print(f"Starting test {i}") | |
for j in range(ntrials): | |
print(f"Starting trial {j}") | |
trial = eureqa.eureqa( | |
test=f"simple{i}", | |
threads=8, | |
binary_operators=["plus", "mult", "pow", "div"], | |
unary_operators=["cos", "exp", "sin", "loga", "abs"], | |
equation_file=equation_file, | |
timeout=maxTime, | |
maxsize=25, | |
verbosity=0, | |
**args) | |
if len(trial) == 0: raise ValueError | |
trials.append( | |
np.min(trial['MSE'])**0.5 / np.std(eval(eval_str[i-1])) | |
) | |
print(f"Test {i} trial {j} with", str(args), f"got {trials[-1]}") | |
except ValueError: | |
print(f"Broken", str(args)) | |
return { | |
'status': 'ok', # or 'fail' if nan loss | |
'loss': np.inf | |
} | |
loss = np.average(trials) | |
print(f"Finished with {loss}", str(args)) | |
return { | |
'status': 'ok', # or 'fail' if nan loss | |
'loss': loss | |
} | |
space = { | |
'niterations': hp.qlognormal('niterations', np.log(10), 1.0, 1), | |
'npop': hp.qlognormal('npop', np.log(100), 1.0, 1), | |
'alpha': hp.lognormal('alpha', np.log(10.0), 1.0), | |
'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 1.0), | |
'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 1.0), | |
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 1.0), | |
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 1.0), | |
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 1.0), | |
'weightInsertNode': hp.lognormal('weightInsertNode', np.log(0.5), 1.0), | |
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 1.0), | |
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 1.0), | |
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 1.0), | |
} | |
################################################################################ | |
def merge_trials(trials1, trials2_slice): | |
"""Merge two hyperopt trials objects | |
:trials1: The primary trials object | |
:trials2_slice: A slice of the trials object to be merged, | |
obtained with, e.g., trials2.trials[:10] | |
:returns: The merged trials object | |
""" | |
max_tid = 0 | |
if len(trials1.trials) > 0: | |
max_tid = max([trial['tid'] for trial in trials1.trials]) | |
for trial in trials2_slice: | |
tid = trial['tid'] + max_tid + 1 | |
hyperopt_trial = Trials().new_trial_docs( | |
tids=[None], | |
specs=[None], | |
results=[None], | |
miscs=[None]) | |
hyperopt_trial[0] = trial | |
hyperopt_trial[0]['tid'] = tid | |
hyperopt_trial[0]['misc']['tid'] = tid | |
for key in hyperopt_trial[0]['misc']['idxs'].keys(): | |
hyperopt_trial[0]['misc']['idxs'][key] = [tid] | |
trials1.insert_trial_docs(hyperopt_trial) | |
trials1.refresh() | |
return trials1 | |
loaded_fnames = [] | |
trials = None | |
# Run new hyperparameter trials until killed | |
while True: | |
np.random.seed() | |
# Load up all runs: | |
import glob | |
path = TRIALS_FOLDER + '/*.pkl' | |
for fname in glob.glob(path): | |
if fname in loaded_fnames: | |
continue | |
trials_obj = pkl.load(open(fname, 'rb')) | |
n_trials = trials_obj['n'] | |
trials_obj = trials_obj['trials'] | |
if len(loaded_fnames) == 0: | |
trials = trials_obj | |
else: | |
print("Merging trials") | |
trials = merge_trials(trials, trials_obj.trials[-n_trials:]) | |
loaded_fnames.append(fname) | |
print("Loaded trials", len(loaded_fnames)) | |
if len(loaded_fnames) == 0: | |
trials = Trials() | |
n = NUMBER_TRIALS_PER_RUN | |
try: | |
best = fmin(run_trial, | |
space=space, | |
algo=tpe.suggest, | |
max_evals=n + len(trials.trials), | |
trials=trials, | |
verbose=1, | |
rstate=np.random.RandomState(np.random.randint(1,10**6)) | |
) | |
except hyperopt.exceptions.AllTrialsFailed: | |
continue | |
print('current best', best) | |
hyperopt_trial = Trials() | |
# Merge with empty trials dataset: | |
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:]) | |
new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + str(time.time()) + '.pkl' | |
pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb')) | |
loaded_fnames.append(new_fname) | |