PySR / gui /processing.py
MilesCranmer's picture
style(gui): ruff lint
09714d6 unverified
raw
history blame
6.69 kB
import multiprocessing as mp
import os
import tempfile
import time
from pathlib import Path
from typing import Callable
import numpy as np
import pandas as pd
from data import generate_data, read_csv
from plots import plot_predictions
def empty_df():
return pd.DataFrame(
{
"Equation": [],
"Loss": [],
"Complexity": [],
}
)
def pysr_fit(queue: mp.Queue, out_queue: mp.Queue):
import pysr
while True:
# Get the arguments from the queue, if available
args = queue.get()
if args is None:
break
X = args["X"]
y = args["y"]
kwargs = args["kwargs"]
model = pysr.PySRRegressor(
progress=False,
timeout_in_seconds=1000,
**kwargs,
)
model.fit(X, y)
out_queue.put(None)
def pysr_predict(queue: mp.Queue, out_queue: mp.Queue):
while True:
args = queue.get()
if args is None:
break
X = args["X"]
equation_file = str(args["equation_file"])
index = args["index"]
equation_file_pkl = equation_file.replace(".csv", ".pkl")
equation_file_bkup = equation_file + ".bkup"
equation_file_copy = equation_file.replace(".csv", "_copy.csv")
equation_file_pkl_copy = equation_file.replace(".csv", "_copy.pkl")
# TODO: See if there is way to get lock on file
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
os.system(f"cp {equation_file_pkl} {equation_file_pkl_copy}")
# Note that we import pysr late in this process to avoid
# pre-compiling the code in two places at once
import pysr
try:
model = pysr.PySRRegressor.from_file(equation_file_pkl_copy, verbosity=0)
except pd.errors.EmptyDataError:
continue
ypred = model.predict(X, index)
# Rename the columns to uppercase
equations = model.equations_[["complexity", "loss", "equation"]].copy()
# Remove any row that has worse loss than previous row:
equations = equations[equations["loss"].cummin() == equations["loss"]]
# TODO: Why is this needed? Are rows not being removed?
equations.columns = ["Complexity", "Loss", "Equation"]
out_queue.put(dict(ypred=ypred, equations=equations))
class ProcessWrapper:
def __init__(self, target: Callable[[mp.Queue, mp.Queue], None]):
self.queue = mp.Queue(maxsize=1)
self.out_queue = mp.Queue(maxsize=1)
self.process = mp.Process(target=target, args=(self.queue, self.out_queue))
self.process.start()
ACTIVE_PROCESS = None
def _random_string():
return "".join(list(np.random.choice("abcdefghijklmnopqrstuvwxyz".split(), 16)))
def processing(
*,
file_input,
force_run,
test_equation,
num_points,
noise_level,
data_seed,
niterations,
maxsize,
binary_operators,
unary_operators,
plot_update_delay,
parsimony,
populations,
population_size,
ncycles_per_iteration,
elementwise_loss,
adaptive_parsimony_scaling,
optimizer_algorithm,
optimizer_iterations,
batching,
batch_size,
**kwargs,
):
# random string:
global ACTIVE_PROCESS
cur_process = _random_string()
ACTIVE_PROCESS = cur_process
"""Load data, then spawn a process to run the greet function."""
print("Starting PySR fit process")
writer = ProcessWrapper(pysr_fit)
print("Starting PySR predict process")
reader = ProcessWrapper(pysr_predict)
if file_input is not None:
try:
X, y = read_csv(file_input, force_run)
except ValueError as e:
return (empty_df(), plot_predictions([], []), str(e))
else:
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
tmpdirname = tempfile.mkdtemp()
base = Path(tmpdirname)
equation_file = base / "hall_of_fame.csv"
# Check if queue is empty, if not, kill the process
# and start a new one
if not writer.queue.empty():
print("Restarting PySR fit process")
if writer.process.is_alive():
writer.process.terminate()
writer.process.join()
writer = ProcessWrapper(pysr_fit)
if not reader.queue.empty():
print("Restarting PySR predict process")
if reader.process.is_alive():
reader.process.terminate()
reader.process.join()
reader = ProcessWrapper(pysr_predict)
writer.queue.put(
dict(
X=X,
y=y,
kwargs=dict(
niterations=niterations,
maxsize=maxsize,
binary_operators=binary_operators,
unary_operators=unary_operators,
equation_file=equation_file,
parsimony=parsimony,
populations=populations,
population_size=population_size,
ncycles_per_iteration=ncycles_per_iteration,
elementwise_loss=elementwise_loss,
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
optimizer_algorithm=optimizer_algorithm,
optimizer_iterations=optimizer_iterations,
batching=batching,
batch_size=batch_size,
),
)
)
last_yield = (
pd.DataFrame({"Complexity": [], "Loss": [], "Equation": []}),
plot_predictions([], []),
"Started!",
)
yield last_yield
while writer.out_queue.empty():
if (
equation_file.exists()
and Path(str(equation_file).replace(".csv", ".pkl")).exists()
):
# First, copy the file to a the copy file
reader.queue.put(
dict(
X=X,
equation_file=equation_file,
index=-1,
)
)
out = reader.out_queue.get()
predictions = out["ypred"]
equations = out["equations"]
last_yield = (
equations[["Complexity", "Loss", "Equation"]],
plot_predictions(y, predictions),
"Running...",
)
yield last_yield
if cur_process != ACTIVE_PROCESS:
# Kill both reader and writer
writer.process.kill()
reader.process.kill()
yield (*last_yield[:-1], "Stopped.")
return
time.sleep(0.1)
yield (*last_yield[:-1], "Done.")
return
def stop():
global ACTIVE_PROCESS
ACTIVE_PROCESS = None
return