Spaces:
Running
Running
import Optim | |
const maxdegree = 2 | |
const actualMaxsize = maxsize + maxdegree | |
# Sum of square error between two arrays | |
function SSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
diff = (x - y) | |
if weighted | |
return sum(diff .* diff .* weights) | |
else | |
return sum(diff .* diff) | |
end | |
end | |
# Mean of square error between two arrays | |
function MSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
return SSE(x, y)/size(x)[1] | |
end | |
const len = size(X)[1] | |
if weighted | |
const avgy = sum(y .* weights)/len/sum(weights) | |
else | |
const avgy = sum(y)/len | |
end | |
const baselineSSE = SSE(y, convert(Array{Float32, 1}, ones(len) .* avgy)) | |
id = (x,) -> x | |
const nuna = size(unaops)[1] | |
const nbin = size(binops)[1] | |
const nops = nuna + nbin | |
const nvar = size(X)[2]; | |
function debug(verbosity, string...) | |
verbosity > 0 ? println(string...) : nothing | |
end | |
function getTime()::Int32 | |
return round(Int32, 1e3*(time()-1.6e9)) | |
end | |
# Define a serialization format for the symbolic equations: | |
mutable struct Node | |
#Holds operators, variables, constants in a tree | |
degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc. | |
val::Union{Float32, Integer} #Either const value, or enumerates variable | |
constant::Bool #false if variable | |
op::Function #enumerates operator (for degree=1,2) | |
l::Union{Node, Nothing} | |
r::Union{Node, Nothing} | |
Node(val::Float32) = new(0, val, true, id, nothing, nothing) | |
Node(val::Integer) = new(0, val, false, id, nothing, nothing) | |
Node(op, l::Node) = new(1, 0.0f0, false, op, l, nothing) | |
Node(op, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing) | |
Node(op, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r) | |
#Allow to pass the leaf value without additional node call: | |
Node(op, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r) | |
Node(op, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r)) | |
Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r)) | |
end | |
# Copy an equation (faster than deepcopy) | |
function copyNode(tree::Node)::Node | |
if tree.degree == 0 | |
return Node(tree.val) | |
elseif tree.degree == 1 | |
return Node(tree.op, copyNode(tree.l)) | |
else | |
return Node(tree.op, copyNode(tree.l), copyNode(tree.r)) | |
end | |
end | |
# Evaluate a symbolic equation: | |
function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32 | |
if tree.degree == 0 | |
if tree.constant | |
return tree.val | |
else | |
return x[tree.val] | |
end | |
elseif tree.degree == 1 | |
return tree.op(evalTree(tree.l, x)) | |
else | |
return tree.op(evalTree(tree.l, x), evalTree(tree.r, x)) | |
end | |
end | |
# Count the operators, constants, variables in an equation | |
function countNodes(tree::Node)::Integer | |
if tree.degree == 0 | |
return 1 | |
elseif tree.degree == 1 | |
return 1 + countNodes(tree.l) | |
else | |
return 1 + countNodes(tree.l) + countNodes(tree.r) | |
end | |
end | |
# Convert an equation to a string | |
function stringTree(tree::Node)::String | |
if tree.degree == 0 | |
if tree.constant | |
return string(tree.val) | |
else | |
return "x$(tree.val - 1)" | |
end | |
elseif tree.degree == 1 | |
return "$(tree.op)($(stringTree(tree.l)))" | |
else | |
return "$(tree.op)($(stringTree(tree.l)), $(stringTree(tree.r)))" | |
end | |
end | |
# Print an equation | |
function printTree(tree::Node) | |
println(stringTree(tree)) | |
end | |
# Return a random node from the tree | |
function randomNode(tree::Node)::Node | |
if tree.degree == 0 | |
return tree | |
end | |
a = countNodes(tree) | |
b = 0 | |
c = 0 | |
if tree.degree >= 1 | |
b = countNodes(tree.l) | |
end | |
if tree.degree == 2 | |
c = countNodes(tree.r) | |
end | |
i = rand(1:1+b+c) | |
if i <= b | |
return randomNode(tree.l) | |
elseif i == b + 1 | |
return tree | |
end | |
return randomNode(tree.r) | |
end | |
# Count the number of unary operators in the equation | |
function countUnaryOperators(tree::Node)::Integer | |
if tree.degree == 0 | |
return 0 | |
elseif tree.degree == 1 | |
return 1 + countUnaryOperators(tree.l) | |
else | |
return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r) | |
end | |
end | |
# Count the number of binary operators in the equation | |
function countBinaryOperators(tree::Node)::Integer | |
if tree.degree == 0 | |
return 0 | |
elseif tree.degree == 1 | |
return 0 + countBinaryOperators(tree.l) | |
else | |
return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r) | |
end | |
end | |
# Count the number of operators in the equation | |
function countOperators(tree::Node)::Integer | |
return countUnaryOperators(tree) + countBinaryOperators(tree) | |
end | |
# Randomly convert an operator into another one (binary->binary; | |
# unary->unary) | |
function mutateOperator(tree::Node)::Node | |
if countOperators(tree) == 0 | |
return tree | |
end | |
node = randomNode(tree) | |
while node.degree == 0 | |
node = randomNode(tree) | |
end | |
if node.degree == 1 | |
node.op = unaops[rand(1:length(unaops))] | |
else | |
node.op = binops[rand(1:length(binops))] | |
end | |
return tree | |
end | |
# Count the number of constants in an equation | |
function countConstants(tree::Node)::Integer | |
if tree.degree == 0 | |
return convert(Integer, tree.constant) | |
elseif tree.degree == 1 | |
return 0 + countConstants(tree.l) | |
else | |
return 0 + countConstants(tree.l) + countConstants(tree.r) | |
end | |
end | |
# Randomly perturb a constant | |
function mutateConstant( | |
tree::Node, T::Float32, | |
probNegate::Float32=0.01f0)::Node | |
# T is between 0 and 1. | |
if countConstants(tree) == 0 | |
return tree | |
end | |
node = randomNode(tree) | |
while node.degree != 0 || node.constant == false | |
node = randomNode(tree) | |
end | |
bottom = 0.1f0 | |
maxChange = perturbationFactor * T + 1.0f0 + bottom | |
factor = maxChange^Float32(rand()) | |
makeConstBigger = rand() > 0.5 | |
if makeConstBigger | |
node.val *= factor | |
else | |
node.val /= factor | |
end | |
if rand() > probNegate | |
node.val *= -1 | |
end | |
return tree | |
end | |
# Evaluate an equation over an array of datapoints | |
function evalTreeArray(tree::Node)::Array{Float32, 1} | |
if tree.degree == 0 | |
if tree.constant | |
return ones(Float32, len) .* tree.val | |
else | |
return ones(Float32, len) .* X[:, tree.val] | |
end | |
elseif tree.degree == 1 | |
return tree.op.(evalTreeArray(tree.l)) | |
else | |
return tree.op.(evalTreeArray(tree.l), evalTreeArray(tree.r)) | |
end | |
end | |
# Score an equation | |
function scoreFunc(tree::Node)::Float32 | |
try | |
return SSE(evalTreeArray(tree), y)/baselineSSE + countNodes(tree)*parsimony | |
catch error | |
if isa(error, DomainError) | |
return 1f9 | |
else | |
throw(error) | |
end | |
end | |
end | |
# Add a random unary/binary operation to the end of a tree | |
function appendRandomOp(tree::Node)::Node | |
node = randomNode(tree) | |
while node.degree != 0 | |
node = randomNode(tree) | |
end | |
choice = rand() | |
makeNewBinOp = choice < nbin/nops | |
if rand() > 0.5 | |
left = Float32(randn()) | |
else | |
left = rand(1:nvar) | |
end | |
if rand() > 0.5 | |
right = Float32(randn()) | |
else | |
right = rand(1:nvar) | |
end | |
if makeNewBinOp | |
newnode = Node( | |
binops[rand(1:length(binops))], | |
left, | |
right | |
) | |
else | |
newnode = Node( | |
unaops[rand(1:length(unaops))], | |
left | |
) | |
end | |
node.l = newnode.l | |
node.r = newnode.r | |
node.op = newnode.op | |
node.degree = newnode.degree | |
node.val = newnode.val | |
node.constant = newnode.constant | |
return tree | |
end | |
# Add random node to the top of a tree | |
function popRandomOp(tree::Node)::Node | |
node = tree | |
choice = rand() | |
makeNewBinOp = choice < nbin/nops | |
left = tree | |
if makeNewBinOp | |
right = randomConstantNode() | |
newnode = Node( | |
binops[rand(1:length(binops))], | |
left, | |
right | |
) | |
else | |
newnode = Node( | |
unaops[rand(1:length(unaops))], | |
left | |
) | |
end | |
node.l = newnode.l | |
node.r = newnode.r | |
node.op = newnode.op | |
node.degree = newnode.degree | |
node.val = newnode.val | |
node.constant = newnode.constant | |
return node | |
end | |
# Insert random node | |
function insertRandomOp(tree::Node)::Node | |
node = randomNode(tree) | |
choice = rand() | |
makeNewBinOp = choice < nbin/nops | |
left = copyNode(node) | |
if makeNewBinOp | |
right = randomConstantNode() | |
newnode = Node( | |
binops[rand(1:length(binops))], | |
left, | |
right | |
) | |
else | |
newnode = Node( | |
unaops[rand(1:length(unaops))], | |
left | |
) | |
end | |
node.l = newnode.l | |
node.r = newnode.r | |
node.op = newnode.op | |
node.degree = newnode.degree | |
node.val = newnode.val | |
node.constant = newnode.constant | |
return tree | |
end | |
function randomConstantNode()::Node | |
if rand() > 0.5 | |
val = Float32(randn()) | |
else | |
val = rand(1:nvar) | |
end | |
newnode = Node(val) | |
return newnode | |
end | |
# Return a random node from the tree with parent | |
function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}} | |
if tree.degree == 0 | |
return tree, parent | |
end | |
a = countNodes(tree) | |
b = 0 | |
c = 0 | |
if tree.degree >= 1 | |
b = countNodes(tree.l) | |
end | |
if tree.degree == 2 | |
c = countNodes(tree.r) | |
end | |
i = rand(1:1+b+c) | |
if i <= b | |
return randomNodeAndParent(tree.l, tree) | |
elseif i == b + 1 | |
return tree, parent | |
end | |
return randomNodeAndParent(tree.r, tree) | |
end | |
# Select a random node, and replace it an the subtree | |
# with a variable or constant | |
function deleteRandomOp(tree::Node)::Node | |
node, parent = randomNodeAndParent(tree, nothing) | |
isroot = (parent == nothing) | |
if node.degree == 0 | |
# Replace with new constant | |
newnode = randomConstantNode() | |
node.l = newnode.l | |
node.r = newnode.r | |
node.op = newnode.op | |
node.degree = newnode.degree | |
node.val = newnode.val | |
node.constant = newnode.constant | |
elseif node.degree == 1 | |
# Join one of the children with the parent | |
if isroot | |
return node.l | |
elseif parent.l == node | |
parent.l = node.l | |
else | |
parent.r = node.l | |
end | |
else | |
# Join one of the children with the parent | |
if rand() < 0.5 | |
if isroot | |
return node.l | |
elseif parent.l == node | |
parent.l = node.l | |
else | |
parent.r = node.l | |
end | |
else | |
if isroot | |
return node.r | |
elseif parent.l == node | |
parent.l = node.r | |
else | |
parent.r = node.r | |
end | |
end | |
end | |
return tree | |
end | |
# Simplify tree | |
function combineOperators(tree::Node)::Node | |
# (const (+*) const) already accounted for | |
# ((const + var) + const) => (const + var) | |
# ((const * var) * const) => (const * var) | |
# (anything commutative!) | |
if tree.degree == 2 && (tree.op == plus || tree.op == mult) | |
op = tree.op | |
if tree.l.constant || tree.r.constant | |
# Put the constant in r | |
if tree.l.constant | |
tmp = tree.r | |
tree.r = tree.l | |
tree.l = tmp | |
end | |
topconstant = tree.r.val | |
# Simplify down first | |
tree.l = combineOperators(tree.l) | |
below = tree.l | |
if below.degree == 2 && below.op == op | |
if below.l.constant | |
tree = below | |
tree.l.val = op(tree.l.val, topconstant) | |
elseif below.r.constant | |
tree = below | |
tree.r.val = op(tree.r.val, topconstant) | |
end | |
end | |
end | |
end | |
return tree | |
end | |
# Simplify tree | |
function simplifyTree(tree::Node)::Node | |
if tree.degree == 1 | |
tree.l = simplifyTree(tree.l) | |
if tree.l.degree == 0 && tree.l.constant | |
return Node(tree.op(tree.l.val)) | |
end | |
elseif tree.degree == 2 | |
tree.r = simplifyTree(tree.r) | |
tree.l = simplifyTree(tree.l) | |
constantsBelow = ( | |
tree.l.degree == 0 && tree.l.constant && | |
tree.r.degree == 0 && tree.r.constant | |
) | |
if constantsBelow | |
return Node(tree.op(tree.l.val, tree.r.val)) | |
end | |
end | |
return tree | |
end | |
# Go through one simulated annealing mutation cycle | |
# exp(-delta/T) defines probability of accepting a change | |
function iterate(tree::Node, T::Float32)::Node | |
prev = tree | |
tree = copyNode(tree) | |
mutationChoice = rand() | |
weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0 | |
cur_weights = copy(mutationWeights) .* 1.0 | |
cur_weights[1] *= weightAdjustmentMutateConstant | |
cur_weights /= sum(cur_weights) | |
cweights = cumsum(cur_weights) | |
n = countNodes(tree) | |
if mutationChoice < cweights[1] | |
tree = mutateConstant(tree, T) | |
elseif mutationChoice < cweights[2] | |
tree = mutateOperator(tree) | |
elseif mutationChoice < cweights[3] && n < maxsize | |
tree = appendRandomOp(tree) | |
elseif mutationChoice < cweights[4] && n < maxsize | |
tree = insertRandomOp(tree) | |
elseif mutationChoice < cweights[5] | |
tree = deleteRandomOp(tree) | |
elseif mutationChoice < cweights[6] | |
tree = simplifyTree(tree) # Sometimes we simplify tree | |
tree = combineOperators(tree) # See if repeated constants at outer levels | |
return tree | |
elseif mutationChoice < cweights[7] | |
tree = genRandomTree(5) # Sometimes we simplify tree | |
else | |
return tree | |
end | |
if annealing | |
beforeLoss = scoreFunc(prev) | |
afterLoss = scoreFunc(tree) | |
delta = afterLoss - beforeLoss | |
probChange = exp(-delta/(T*alpha)) | |
if isnan(afterLoss) || probChange < rand() | |
return copyNode(prev) | |
end | |
end | |
return tree | |
end | |
# Create a random equation by appending random operators | |
function genRandomTree(length::Integer)::Node | |
tree = Node(1.0f0) | |
for i=1:length | |
tree = appendRandomOp(tree) | |
end | |
return tree | |
end | |
# Define a member of population by equation, score, and age | |
mutable struct PopMember | |
tree::Node | |
score::Float32 | |
birth::Int32 | |
PopMember(t::Node) = new(t, scoreFunc(t), getTime()) | |
PopMember(t::Node, score::Float32) = new(t, score, getTime()) | |
end | |
# A list of members of the population, with easy constructors, | |
# which allow for random generation of new populations | |
mutable struct Population | |
members::Array{PopMember, 1} | |
n::Integer | |
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1]) | |
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop) | |
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop) | |
end | |
# Sample 10 random members of the population, and make a new one | |
function samplePop(pop::Population)::Population | |
idx = rand(1:pop.n, ns) | |
return Population(pop.members[idx]) | |
end | |
# Sample the population, and get the best member from that sample | |
function bestOfSample(pop::Population)::PopMember | |
sample = samplePop(pop) | |
best_idx = argmin([sample.members[member].score for member=1:sample.n]) | |
return sample.members[best_idx] | |
end | |
# Return best 10 examples | |
function bestSubPop(pop::Population; topn::Integer=10)::Population | |
best_idx = sortperm([pop.members[member].score for member=1:pop.n]) | |
return Population(pop.members[best_idx[1:topn]]) | |
end | |
# Mutate the best sampled member of the population | |
function iterateSample(pop::Population, T::Float32)::PopMember | |
allstar = bestOfSample(pop) | |
new = iterate(allstar.tree, T) | |
allstar.tree = new | |
allstar.score = scoreFunc(new) | |
allstar.birth = getTime() | |
return allstar | |
end | |
# Pass through the population several times, replacing the oldest | |
# with the fittest of a small subsample | |
function regEvolCycle(pop::Population, T::Float32)::Population | |
for i=1:round(Integer, pop.n/ns) | |
baby = iterateSample(pop, T) | |
#printTree(baby.tree) | |
oldest = argmin([pop.members[member].birth for member=1:pop.n]) | |
pop.members[oldest] = baby | |
end | |
return pop | |
end | |
# Cycle through regularized evolution many times, | |
# printing the fittest equation every 10% through | |
function run( | |
pop::Population, | |
ncycles::Integer; | |
verbosity::Integer=0 | |
)::Population | |
allT = LinRange(1.0f0, 0.0f0, ncycles) | |
for iT in 1:size(allT)[1] | |
if annealing | |
pop = regEvolCycle(pop, allT[iT]) | |
else | |
pop = regEvolCycle(pop, 1.0f0) | |
end | |
if verbosity > 0 && (iT % verbosity == 0) | |
bestPops = bestSubPop(pop) | |
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n]) | |
bestCurScore = bestPops.members[bestCurScoreIdx].score | |
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree)) | |
end | |
end | |
return pop | |
end | |
# Get all the constants from a tree | |
function getConstants(tree::Node)::Array{Float32, 1} | |
if tree.degree == 0 | |
if tree.constant | |
return [tree.val] | |
else | |
return Float32[] | |
end | |
elseif tree.degree == 1 | |
return getConstants(tree.l) | |
else | |
both = [getConstants(tree.l), getConstants(tree.r)] | |
return [constant for subtree in both for constant in subtree] | |
end | |
end | |
# Set all the constants inside a tree | |
function setConstants(tree::Node, constants::Array{Float32, 1}) | |
if tree.degree == 0 | |
if tree.constant | |
tree.val = constants[1] | |
end | |
elseif tree.degree == 1 | |
setConstants(tree.l, constants) | |
else | |
numberLeft = countConstants(tree.l) | |
setConstants(tree.l, constants) | |
setConstants(tree.r, constants[numberLeft+1:end]) | |
end | |
end | |
# Proxy function for optimization | |
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32 | |
setConstants(tree, x) | |
return scoreFunc(tree) | |
end | |
# Use Nelder-Mead to optimize the constants in an equation | |
function optimizeConstants(member::PopMember)::PopMember | |
nconst = countConstants(member.tree) | |
if nconst == 0 | |
return member | |
end | |
x0 = getConstants(member.tree) | |
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree) | |
if size(x0)[1] == 1 | |
algorithm = Optim.Newton | |
else | |
algorithm = Optim.NelderMead | |
end | |
try | |
result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100)) | |
# Try other initial conditions: | |
for i=1:nrestarts | |
tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100)) | |
if tmpresult.minimum < result.minimum | |
result = tmpresult | |
end | |
end | |
if Optim.converged(result) | |
setConstants(member.tree, result.minimizer) | |
member.score = convert(Float32, result.minimum) | |
member.birth = getTime() | |
else | |
setConstants(member.tree, x0) | |
end | |
catch error | |
# Fine if optimization encountered domain error, just return x0 | |
if isa(error, AssertionError) | |
setConstants(member.tree, x0) | |
else | |
throw(error) | |
end | |
end | |
return member | |
end | |
# List of the best members seen all time | |
mutable struct HallOfFame | |
members::Array{PopMember, 1} | |
exists::Array{Bool, 1} #Whether it has been set | |
# Arranged by complexity - store one at each. | |
HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize]) | |
end | |
function fullRun(niterations::Integer; | |
npop::Integer=300, | |
ncyclesperiteration::Integer=3000, | |
fractionReplaced::Float32=0.1f0, | |
verbosity::Integer=0, | |
topn::Integer=10 | |
) | |
debug(verbosity, "Running with $nthreads threads") | |
# Generate random initial populations | |
allPops = [Population(npop, 3) for j=1:nthreads] | |
bestSubPops = [Population(1) for j=1:nthreads] | |
# Repeat this many evolutions; we collect and migrate the best | |
# each time. | |
hallOfFame = HallOfFame() | |
for k=1:niterations | |
# Spawn threads to run indepdent evolutions, then gather them | |
for i=1:nthreads | Threads.|
allPops[i] = run(allPops[i], ncyclesperiteration, verbosity=verbosity) | |
for j=1:allPops[i].n | |
if rand() < 0.1 | |
allPops[i].members[j].tree = simplifyTree(allPops[i].members[j].tree) | |
allPops[i].members[j].tree = combineOperators(allPops[i].members[j].tree) | |
if shouldOptimizeConstants | |
allPops[i].members[j] = optimizeConstants(allPops[i].members[j]) | |
end | |
end | |
end | |
bestSubPops[i] = bestSubPop(allPops[i], topn=topn) | |
end | |
# Get best 10 models from each evolution. Copy because we re-assign later. | |
# bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members])) | |
bestPops = deepcopy(Population([member for pop in bestSubPops for member in pop.members])) | |
#Update hall of fame | |
for pop in allPops | |
for member in pop.members | |
size = countNodes(member.tree) | |
if member.score < hallOfFame.members[size].score | |
hallOfFame.members[size] = deepcopy(member) | |
hallOfFame.exists[size] = true | |
end | |
end | |
end | |
# Dominating pareto curve - must be better than all simpler equations | |
dominating = PopMember[] | |
open(hofFile, "w") do io | |
debug(verbosity, "Hall of Fame:") | |
debug(verbosity, "-----------------------------------------") | |
debug(verbosity, "Complexity \t MSE \t Equation") | |
println(io,"Complexity|MSE|Equation") | |
for size=1:actualMaxsize | |
if hallOfFame.exists[size] | |
member = hallOfFame.members[size] | |
curMSE = MSE(evalTreeArray(member.tree), y) | |
numberSmallerAndBetter = sum([curMSE > MSE(evalTreeArray(hallOfFame.members[i].tree), y) for i=1:(size-1)]) | |
betterThanAllSmaller = (numberSmallerAndBetter == 0) | |
if betterThanAllSmaller | |
debug(verbosity, "$size \t $(curMSE) \t $(stringTree(member.tree))") | |
println(io, "$size|$(curMSE)|$(stringTree(member.tree))") | |
push!(dominating, member) | |
end | |
end | |
end | |
debug(verbosity, "") | |
end | |
# Migration | |
if migration | |
for j=1:nthreads | |
for k in rand(1:npop, round(Integer, npop*fractionReplaced)) | |
# Copy in case one gets used twice | |
allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])]) | |
end | |
end | |
end | |
# Hall of fame migration | |
if hofMigration && size(dominating)[1] > 0 | |
for j=1:nthreads | |
for k in rand(1:npop, round(Integer, npop*fractionReplacedHof)) | |
# Copy in case one gets used twice | |
allPops[j].members[k] = deepcopy(dominating[rand(1:size(dominating)[1])]) | |
end | |
end | |
end | |
end | |
end | |