Spaces:
Sleeping
Sleeping
import numpy as np | |
class Truth: | |
def __init__(self, transformation, model): | |
self.transformation = transformation | |
self.weights = list(model.coef_) + [model.intercept_] | |
def predict(self, X, y): | |
transformed = self.transformation.transform(X) | |
res = np.zeros(shape=y.shape) | |
for w in range(len(self.weights)): | |
if w < X.shape[1]: | |
res = res + (X[:, w] * self.weights[w]) | |
elif w == X.shape[1]: | |
res = res + (y * self.weights[w]) | |
else: | |
assert w == X.shape[1] + 1 | |
res = res + self.weights[w] | |
return res | |
def transform(self, X): | |
return self.transformation.transform(X) | |
def __str__(self): | |
return f"Auxiliary Truth: {self.transformation} with linear coefficients for X, y, 1 {self.weights}" | |
def __repr__(self): | |
return str(self) | |
def julia_string(self): | |
""" | |
Return an expression that sorta creates a julia instances of Truth with these parameters | |
Specifically Truth(type, params, weights) | |
Julia indexing starts at 1 not 0 so we need to add 1 to all parameter indices | |
""" | |
index = self.transformation.index | |
params = self.transformation.get_params() | |
return f"Truth({index}, {[param + 1 for param in params]}, {self.weights})" |