Spaces:
Running
Running
import unittest | |
import numpy as np | |
from pysr import pysr, get_hof, best, best_tex, best_callable, best_row | |
from pysr.sr import run_feature_selection, _handle_feature_selection | |
import sympy | |
from sympy import lambdify | |
import pandas as pd | |
class TestPipeline(unittest.TestCase): | |
def setUp(self): | |
self.default_test_kwargs = dict( | |
niterations=10, | |
populations=4, | |
user_input=False, | |
annealing=True, | |
useFrequency=False, | |
) | |
np.random.seed(0) | |
self.X = np.random.randn(100, 5) | |
def test_linear_relation(self): | |
y = self.X[:, 0] | |
equations = pysr(self.X, y, **self.default_test_kwargs) | |
print(equations) | |
self.assertLessEqual(equations.iloc[-1]['MSE'], 1e-4) | |
def test_multioutput_custom_operator(self): | |
y = self.X[:, [0, 1]]**2 | |
equations = pysr(self.X, y, | |
unary_operators=["sq(x) = x^2"], binary_operators=["plus"], | |
extra_sympy_mappings={'sq': lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0) | |
print(equations) | |
self.assertLessEqual(equations[0].iloc[-1]['MSE'], 1e-4) | |
self.assertLessEqual(equations[1].iloc[-1]['MSE'], 1e-4) | |
def test_multioutput_weighted_with_callable(self): | |
y = self.X[:, [0, 1]]**2 | |
w = np.random.rand(*y.shape) | |
w[w < 0.5] = 0.0 | |
w[w >= 0.5] = 1.0 | |
# Double equation when weights are 0: | |
y += (1-w) * y | |
# Thus, pysr needs to use the weights to find the right equation! | |
equations = pysr(self.X, y, weights=w, | |
unary_operators=["sq(x) = x^2"], binary_operators=["plus"], | |
extra_sympy_mappings={'sq': lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0) | |
np.testing.assert_almost_equal( | |
best_callable()[0](self.X), | |
self.X[:, 0]**2) | |
np.testing.assert_almost_equal( | |
best_callable()[1](self.X), | |
self.X[:, 1]**2) | |
def test_empty_operators_single_input(self): | |
X = np.random.randn(100, 1) | |
y = X[:, 0] + 3.0 | |
equations = pysr(X, y, | |
unary_operators=[], binary_operators=["plus"], | |
**self.default_test_kwargs) | |
self.assertLessEqual(equations.iloc[-1]['MSE'], 1e-4) | |
class TestBest(unittest.TestCase): | |
def setUp(self): | |
equations = pd.DataFrame({ | |
'Equation': ['1.0', 'cos(x0)', 'square(cos(x0))'], | |
'MSE': [1.0, 0.1, 1e-5], | |
'Complexity': [1, 2, 3] | |
}) | |
equations['Complexity MSE Equation'.split(' ')].to_csv( | |
'equation_file.csv.bkup', sep='|') | |
self.equations = get_hof( | |
'equation_file.csv', n_features=2, | |
variables_names='x0 x1'.split(' '), | |
extra_sympy_mappings={}, output_jax_format=False, | |
multioutput=False, nout=1) | |
def test_best(self): | |
self.assertEqual(best(self.equations), sympy.cos(sympy.Symbol('x0'))**2) | |
self.assertEqual(best(), sympy.cos(sympy.Symbol('x0'))**2) | |
def test_best_tex(self): | |
self.assertEqual(best_tex(self.equations), '\\cos^{2}{\\left(x_{0} \\right)}') | |
self.assertEqual(best_tex(), '\\cos^{2}{\\left(x_{0} \\right)}') | |
def test_best_lambda(self): | |
X = np.random.randn(10, 2) | |
y = np.cos(X[:, 0])**2 | |
for f in [best_callable(), best_callable(self.equations)]: | |
np.testing.assert_almost_equal(f(X), y) | |
class TestFeatureSelection(unittest.TestCase): | |
def test_feature_selection(self): | |
np.random.seed(0) | |
X = np.random.randn(20001, 5) | |
y = X[:, 2]**2 + X[:, 3]**2 | |
selected = run_feature_selection(X, y, select_k_features=2) | |
self.assertEqual(sorted(selected), [2, 3]) | |
def test_feature_selection_handler(self): | |
np.random.seed(0) | |
X = np.random.randn(20000, 5) | |
y = X[:, 2]**2 + X[:, 3]**2 | |
var_names = [f'x{i}' for i in range(5)] | |
selected_X, selected_var_names = _handle_feature_selection( | |
X, select_k_features=2, | |
use_custom_variable_names=True, | |
variable_names=[f'x{i}' for i in range(5)], | |
y=y) | |
self.assertEqual(set(selected_var_names), set('x2 x3'.split(' '))) | |
np.testing.assert_array_equal( | |
np.sort(selected_X, axis=1), | |
np.sort(X[:, [2, 3]], axis=1) | |
) | |