PySR / benchmarks /hyperparamopt.py
MilesCranmer's picture
Fix parts of hyperparam optimization
7acfb32
raw
history blame
11 kB
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
from pysr import PySRRegressor
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
from hyperopt.fmin import generate_trials_to_calculate
# Change the following code to your file
################################################################################
TRIALS_FOLDER = "trials2"
NUMBER_TRIALS_PER_RUN = 1
timeout_in_minutes = 5
# Test run to compile everything:
binary_operators = ["*", "/", "+", "-"]
unary_operators = ["sin", "cos", "exp", "log"]
julia_project = None
procs = 4
model = PySRRegressor(
binary_operators=binary_operators,
unary_operators=unary_operators,
timeout_in_seconds=30,
julia_project=julia_project,
procs=procs,
)
model.fit(np.random.randn(100, 3), np.random.randn(100))
def run_trial(args):
"""Evaluate the model loss using the hyperparams in args
:args: A dictionary containing all hyperparameters
:returns: Dict with status and loss from cross-validation
"""
# The arguments which are integers:
integer_args = [
"populations",
"niterations",
"ncyclesperiteration",
"npop",
"topn",
"maxsize",
"optimizer_nrestarts",
"optimizer_iterations",
]
# Set these to int types:
for k, v in args.items():
if k in integer_args:
args[k] = int(v)
# Duplicate this argument:
args["tournament_selection_n"] = args["topn"]
# Invalid hyperparams:
invalid = args["npop"] < args["topn"]
if invalid:
return dict(status="fail", loss=float("inf"))
args["timeout_in_seconds"] = timeout_in_minutes * 60
args["julia_project"] = julia_project
args["procs"] = procs
print(f"Running trial with args: {args}")
# Create the dataset:
ntrials = 3
losses = []
# Old datasets:
eval_str = [
"np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2]) - 10.0",
"(np.exp(X[:, 3]*0.3) + 3)/(np.exp(X[:, 1]*0.2) + np.cos(X[:, 0]) + 1.1)",
# "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
# "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
# "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0",
]
for expression in eval_str:
expression_losses = []
for i in range(ntrials):
rstate = np.random.RandomState(i)
X = 3 * rstate.randn(200, 5)
y = eval(expression)
# Normalize y so that losses are fair:
y = (y - np.average(y)) / np.std(y)
# Create the model:
model = PySRRegressor(**args)
# Run the model:
try:
model.fit(X, y)
except RuntimeError:
return dict(status="fail", loss=float("inf"))
# Compute loss:
cur_loss = float(model.get_best()["loss"])
expression_losses.append(cur_loss)
losses.append(np.median(expression_losses))
loss = np.average(losses)
print(f"Finished with {loss}", str(args))
return dict(status="ok", loss=loss)
space = dict(
# model_selection="best",
model_selection=hp.choice("model_selection", ["accuracy"]),
# binary_operators=None,
binary_operators=hp.choice("binary_operators", [binary_operators]),
# unary_operators=None,
unary_operators=hp.choice("unary_operators", [unary_operators]),
# populations=100,
populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1),
# niterations=4,
niterations=hp.choice(
"niterations", [10000]
), # We will quit automatically based on a clock.
# ncyclesperiteration=100,
ncyclesperiteration=hp.qloguniform(
"ncyclesperiteration", np.log(10), np.log(5000), 1
),
# alpha=0.1,
alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)),
# annealing=False,
annealing=hp.choice("annealing", [False, True]),
# fractionReplaced=0.01,
fractionReplaced=hp.loguniform("fractionReplaced", np.log(0.0001), np.log(0.5)),
# fractionReplacedHof=0.005,
fractionReplacedHof=hp.loguniform(
"fractionReplacedHof", np.log(0.0001), np.log(0.5)
),
# npop=100,
npop=hp.qloguniform("npop", np.log(20), np.log(1000), 1),
# parsimony=1e-4,
parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)),
# topn=10,
topn=hp.qloguniform("topn", np.log(2), np.log(50), 1),
# weightAddNode=1,
weightAddNode=hp.loguniform("weightAddNode", np.log(0.0001), np.log(100)),
# weightInsertNode=3,
weightInsertNode=hp.loguniform("weightInsertNode", np.log(0.0001), np.log(100)),
# weightDeleteNode=3,
weightDeleteNode=hp.loguniform("weightDeleteNode", np.log(0.0001), np.log(100)),
# weightDoNothing=1,
weightDoNothing=hp.loguniform("weightDoNothing", np.log(0.0001), np.log(100)),
# weightMutateConstant=10,
weightMutateConstant=hp.loguniform(
"weightMutateConstant", np.log(0.0001), np.log(100)
),
# weightMutateOperator=1,
weightMutateOperator=hp.loguniform(
"weightMutateOperator", np.log(0.0001), np.log(100)
),
# weightRandomize=1,
weightRandomize=hp.loguniform("weightRandomize", np.log(0.0001), np.log(100)),
# weightSimplify=0.002,
weightSimplify=hp.choice("weightSimplify", [0.002]), # One of these is fixed.
# perturbationFactor=1.0,
perturbationFactor=hp.loguniform("perturbationFactor", np.log(0.0001), np.log(100)),
# maxsize=20,
maxsize=hp.choice("maxsize", [20]),
# warmupMaxsizeBy=0.0,
warmupMaxsizeBy=hp.uniform("warmupMaxsizeBy", 0.0, 0.5),
# useFrequency=True,
useFrequency=hp.choice("useFrequency", [True, False]),
# optimizer_nrestarts=3,
optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1),
# optimize_probability=1.0,
optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0),
# optimizer_iterations=10,
optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1),
# tournament_selection_p=1.0,
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
)
init_vals = [
dict(
model_selection=0, # 0 means first choice
binary_operators=0,
unary_operators=0,
populations=100.0,
niterations=0,
ncyclesperiteration=100.0,
alpha=0.1,
annealing=0,
# fractionReplaced=0.01,
fractionReplaced=0.01,
# fractionReplacedHof=0.005,
fractionReplacedHof=0.005,
# npop=100,
npop=100.0,
# parsimony=1e-4,
parsimony=1e-4,
# topn=10,
topn=10.0,
# weightAddNode=1,
weightAddNode=1.0,
# weightInsertNode=3,
weightInsertNode=3.0,
# weightDeleteNode=3,
weightDeleteNode=3.0,
# weightDoNothing=1,
weightDoNothing=1.0,
# weightMutateConstant=10,
weightMutateConstant=10.0,
# weightMutateOperator=1,
weightMutateOperator=1.0,
# weightRandomize=1,
weightRandomize=1.0,
# weightSimplify=0.002,
weightSimplify=0, # One of these is fixed.
# perturbationFactor=1.0,
perturbationFactor=1.0,
# maxsize=20,
maxsize=0,
# warmupMaxsizeBy=0.0,
warmupMaxsizeBy=0.0,
# useFrequency=True,
useFrequency=1,
# optimizer_nrestarts=3,
optimizer_nrestarts=3.0,
# optimize_probability=1.0,
optimize_probability=1.0,
# optimizer_iterations=10,
optimizer_iterations=10.0,
# tournament_selection_p=1.0,
tournament_selection_p=0.999,
)
]
################################################################################
def merge_trials(trials1, trials2_slice):
"""Merge two hyperopt trials objects
:trials1: The primary trials object
:trials2_slice: A slice of the trials object to be merged,
obtained with, e.g., trials2.trials[:10]
:returns: The merged trials object
"""
max_tid = 0
if len(trials1.trials) > 0:
max_tid = max([trial["tid"] for trial in trials1.trials])
for trial in trials2_slice:
tid = trial["tid"] + max_tid + 2
local_hyperopt_trial = Trials().new_trial_docs(
tids=[None], specs=[None], results=[None], miscs=[None]
)
local_hyperopt_trial[0] = trial
local_hyperopt_trial[0]["tid"] = tid
local_hyperopt_trial[0]["misc"]["tid"] = tid
for key in local_hyperopt_trial[0]["misc"]["idxs"].keys():
local_hyperopt_trial[0]["misc"]["idxs"][key] = [tid]
trials1.insert_trial_docs(local_hyperopt_trial)
trials1.refresh()
return trials1
import glob
path = TRIALS_FOLDER + "/*.pkl"
n_prior_trials = len(list(glob.glob(path)))
loaded_fnames = []
trials = generate_trials_to_calculate(init_vals)
i = n_prior_trials
n = NUMBER_TRIALS_PER_RUN
if i > 0:
trials = None
# Run new hyperparameter trials until killed
while True:
np.random.seed()
# Load up all runs:
if i > 0:
for fname in glob.glob(path):
if fname in loaded_fnames:
continue
trials_obj = pkl.load(open(fname, "rb"))
n_trials = trials_obj["n"]
trials_obj = trials_obj["trials"]
if len(loaded_fnames) == 0:
trials = trials_obj
else:
print("Merging trials")
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
loaded_fnames.append(fname)
print("Loaded trials", len(loaded_fnames))
if len(loaded_fnames) == 0:
trials = Trials()
try:
best = fmin(
run_trial,
space=space,
algo=tpe.suggest,
max_evals=n + len(trials.trials),
trials=trials,
verbose=1,
rstate=np.random.default_rng(np.random.randint(1, 10**6)),
)
except hyperopt.exceptions.AllTrialsFailed:
continue
else:
best = fmin(
run_trial,
space=space,
algo=tpe.suggest,
max_evals=1,
trials=trials,
points_to_evaluate=init_vals,
)
print("current best", best)
hyperopt_trial = Trials()
# Merge with empty trials dataset:
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
loaded_fnames.append(new_fname)
i += 1