Spaces:
Running
Running
"""Start a hyperoptimization from a single node""" | |
import sys | |
import numpy as np | |
import pickle as pkl | |
from pysr import PySRRegressor | |
import hyperopt | |
from hyperopt import hp, fmin, tpe, Trials | |
from hyperopt.fmin import generate_trials_to_calculate | |
# Change the following code to your file | |
################################################################################ | |
TRIALS_FOLDER = "trials2" | |
NUMBER_TRIALS_PER_RUN = 1 | |
timeout_in_minutes = 5 | |
# Test run to compile everything: | |
binary_operators = ["*", "/", "+", "-"] | |
unary_operators = ["sin", "cos", "exp", "log"] | |
julia_project = None | |
procs = 4 | |
model = PySRRegressor( | |
binary_operators=binary_operators, | |
unary_operators=unary_operators, | |
timeout_in_seconds=30, | |
julia_project=julia_project, | |
procs=procs, | |
) | |
model.fit(np.random.randn(100, 3), np.random.randn(100)) | |
def run_trial(args): | |
"""Evaluate the model loss using the hyperparams in args | |
:args: A dictionary containing all hyperparameters | |
:returns: Dict with status and loss from cross-validation | |
""" | |
# The arguments which are integers: | |
integer_args = [ | |
"populations", | |
"niterations", | |
"ncyclesperiteration", | |
"npop", | |
"topn", | |
"maxsize", | |
"optimizer_nrestarts", | |
"optimizer_iterations", | |
] | |
# Set these to int types: | |
for k, v in args.items(): | |
if k in integer_args: | |
args[k] = int(v) | |
# Duplicate this argument: | |
args["tournament_selection_n"] = args["topn"] | |
# Invalid hyperparams: | |
invalid = args["npop"] < args["topn"] | |
if invalid: | |
return dict(status="fail", loss=float("inf")) | |
args["timeout_in_seconds"] = timeout_in_minutes * 60 | |
args["julia_project"] = julia_project | |
args["procs"] = procs | |
print(f"Running trial with args: {args}") | |
# Create the dataset: | |
ntrials = 3 | |
losses = [] | |
# Old datasets: | |
eval_str = [ | |
"np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2]) - 10.0", | |
"(np.exp(X[:, 3]*0.3) + 3)/(np.exp(X[:, 1]*0.2) + np.cos(X[:, 0]) + 1.1)", | |
# "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5", | |
# "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)", | |
# "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0", | |
] | |
for expression in eval_str: | |
expression_losses = [] | |
for i in range(ntrials): | |
rstate = np.random.RandomState(i) | |
X = 3 * rstate.randn(200, 5) | |
y = eval(expression) | |
# Normalize y so that losses are fair: | |
y = (y - np.average(y)) / np.std(y) | |
# Create the model: | |
model = PySRRegressor(**args) | |
# Run the model: | |
try: | |
model.fit(X, y) | |
except RuntimeError: | |
return dict(status="fail", loss=float("inf")) | |
# Compute loss: | |
cur_loss = float(model.get_best()["loss"]) | |
expression_losses.append(cur_loss) | |
losses.append(np.median(expression_losses)) | |
loss = np.average(losses) | |
print(f"Finished with {loss}", str(args)) | |
return dict(status="ok", loss=loss) | |
space = dict( | |
# model_selection="best", | |
model_selection=hp.choice("model_selection", ["accuracy"]), | |
# binary_operators=None, | |
binary_operators=hp.choice("binary_operators", [binary_operators]), | |
# unary_operators=None, | |
unary_operators=hp.choice("unary_operators", [unary_operators]), | |
# populations=100, | |
populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1), | |
# niterations=4, | |
niterations=hp.choice( | |
"niterations", [10000] | |
), # We will quit automatically based on a clock. | |
# ncyclesperiteration=100, | |
ncyclesperiteration=hp.qloguniform( | |
"ncyclesperiteration", np.log(10), np.log(5000), 1 | |
), | |
# alpha=0.1, | |
alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)), | |
# annealing=False, | |
annealing=hp.choice("annealing", [False, True]), | |
# fractionReplaced=0.01, | |
fractionReplaced=hp.loguniform("fractionReplaced", np.log(0.0001), np.log(0.5)), | |
# fractionReplacedHof=0.005, | |
fractionReplacedHof=hp.loguniform( | |
"fractionReplacedHof", np.log(0.0001), np.log(0.5) | |
), | |
# npop=100, | |
npop=hp.qloguniform("npop", np.log(20), np.log(1000), 1), | |
# parsimony=1e-4, | |
parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)), | |
# topn=10, | |
topn=hp.qloguniform("topn", np.log(2), np.log(50), 1), | |
# weightAddNode=1, | |
weightAddNode=hp.loguniform("weightAddNode", np.log(0.0001), np.log(100)), | |
# weightInsertNode=3, | |
weightInsertNode=hp.loguniform("weightInsertNode", np.log(0.0001), np.log(100)), | |
# weightDeleteNode=3, | |
weightDeleteNode=hp.loguniform("weightDeleteNode", np.log(0.0001), np.log(100)), | |
# weightDoNothing=1, | |
weightDoNothing=hp.loguniform("weightDoNothing", np.log(0.0001), np.log(100)), | |
# weightMutateConstant=10, | |
weightMutateConstant=hp.loguniform( | |
"weightMutateConstant", np.log(0.0001), np.log(100) | |
), | |
# weightMutateOperator=1, | |
weightMutateOperator=hp.loguniform( | |
"weightMutateOperator", np.log(0.0001), np.log(100) | |
), | |
# weightRandomize=1, | |
weightRandomize=hp.loguniform("weightRandomize", np.log(0.0001), np.log(100)), | |
# weightSimplify=0.002, | |
weightSimplify=hp.choice("weightSimplify", [0.002]), # One of these is fixed. | |
# perturbationFactor=1.0, | |
perturbationFactor=hp.loguniform("perturbationFactor", np.log(0.0001), np.log(100)), | |
# maxsize=20, | |
maxsize=hp.choice("maxsize", [20]), | |
# warmupMaxsizeBy=0.0, | |
warmupMaxsizeBy=hp.uniform("warmupMaxsizeBy", 0.0, 0.5), | |
# useFrequency=True, | |
useFrequency=hp.choice("useFrequency", [True, False]), | |
# optimizer_nrestarts=3, | |
optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1), | |
# optimize_probability=1.0, | |
optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0), | |
# optimizer_iterations=10, | |
optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1), | |
# tournament_selection_p=1.0, | |
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0), | |
) | |
init_vals = [ | |
dict( | |
model_selection=0, # 0 means first choice | |
binary_operators=0, | |
unary_operators=0, | |
populations=100.0, | |
niterations=0, | |
ncyclesperiteration=100.0, | |
alpha=0.1, | |
annealing=0, | |
# fractionReplaced=0.01, | |
fractionReplaced=0.01, | |
# fractionReplacedHof=0.005, | |
fractionReplacedHof=0.005, | |
# npop=100, | |
npop=100.0, | |
# parsimony=1e-4, | |
parsimony=1e-4, | |
# topn=10, | |
topn=10.0, | |
# weightAddNode=1, | |
weightAddNode=1.0, | |
# weightInsertNode=3, | |
weightInsertNode=3.0, | |
# weightDeleteNode=3, | |
weightDeleteNode=3.0, | |
# weightDoNothing=1, | |
weightDoNothing=1.0, | |
# weightMutateConstant=10, | |
weightMutateConstant=10.0, | |
# weightMutateOperator=1, | |
weightMutateOperator=1.0, | |
# weightRandomize=1, | |
weightRandomize=1.0, | |
# weightSimplify=0.002, | |
weightSimplify=0, # One of these is fixed. | |
# perturbationFactor=1.0, | |
perturbationFactor=1.0, | |
# maxsize=20, | |
maxsize=0, | |
# warmupMaxsizeBy=0.0, | |
warmupMaxsizeBy=0.0, | |
# useFrequency=True, | |
useFrequency=1, | |
# optimizer_nrestarts=3, | |
optimizer_nrestarts=3.0, | |
# optimize_probability=1.0, | |
optimize_probability=1.0, | |
# optimizer_iterations=10, | |
optimizer_iterations=10.0, | |
# tournament_selection_p=1.0, | |
tournament_selection_p=0.999, | |
) | |
] | |
################################################################################ | |
def merge_trials(trials1, trials2_slice): | |
"""Merge two hyperopt trials objects | |
:trials1: The primary trials object | |
:trials2_slice: A slice of the trials object to be merged, | |
obtained with, e.g., trials2.trials[:10] | |
:returns: The merged trials object | |
""" | |
max_tid = 0 | |
if len(trials1.trials) > 0: | |
max_tid = max([trial["tid"] for trial in trials1.trials]) | |
for trial in trials2_slice: | |
tid = trial["tid"] + max_tid + 2 | |
local_hyperopt_trial = Trials().new_trial_docs( | |
tids=[None], specs=[None], results=[None], miscs=[None] | |
) | |
local_hyperopt_trial[0] = trial | |
local_hyperopt_trial[0]["tid"] = tid | |
local_hyperopt_trial[0]["misc"]["tid"] = tid | |
for key in local_hyperopt_trial[0]["misc"]["idxs"].keys(): | |
local_hyperopt_trial[0]["misc"]["idxs"][key] = [tid] | |
trials1.insert_trial_docs(local_hyperopt_trial) | |
trials1.refresh() | |
return trials1 | |
import glob | |
path = TRIALS_FOLDER + "/*.pkl" | |
n_prior_trials = len(list(glob.glob(path))) | |
loaded_fnames = [] | |
trials = generate_trials_to_calculate(init_vals) | |
i = n_prior_trials | |
n = NUMBER_TRIALS_PER_RUN | |
if i > 0: | |
trials = None | |
# Run new hyperparameter trials until killed | |
while True: | |
np.random.seed() | |
# Load up all runs: | |
if i > 0: | |
for fname in glob.glob(path): | |
if fname in loaded_fnames: | |
continue | |
trials_obj = pkl.load(open(fname, "rb")) | |
n_trials = trials_obj["n"] | |
trials_obj = trials_obj["trials"] | |
if len(loaded_fnames) == 0: | |
trials = trials_obj | |
else: | |
print("Merging trials") | |
trials = merge_trials(trials, trials_obj.trials[-n_trials:]) | |
loaded_fnames.append(fname) | |
print("Loaded trials", len(loaded_fnames)) | |
if len(loaded_fnames) == 0: | |
trials = Trials() | |
try: | |
best = fmin( | |
run_trial, | |
space=space, | |
algo=tpe.suggest, | |
max_evals=n + len(trials.trials), | |
trials=trials, | |
verbose=1, | |
rstate=np.random.default_rng(np.random.randint(1, 10**6)), | |
) | |
except hyperopt.exceptions.AllTrialsFailed: | |
continue | |
else: | |
best = fmin( | |
run_trial, | |
space=space, | |
algo=tpe.suggest, | |
max_evals=1, | |
trials=trials, | |
points_to_evaluate=init_vals, | |
) | |
print("current best", best) | |
hyperopt_trial = Trials() | |
# Merge with empty trials dataset: | |
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:]) | |
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl" | |
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb")) | |
loaded_fnames.append(new_fname) | |
i += 1 | |