Spaces:
Build error
Build error
Pietro Lesci
commited on
Commit
β’
ae89532
1
Parent(s):
cb547e1
Update wordifier_nb.ipynb
Browse files- notebooks/wordifier_nb.ipynb +16 -12
notebooks/wordifier_nb.ipynb
CHANGED
@@ -93,12 +93,12 @@
|
|
93 |
"output_type": "stream",
|
94 |
"name": "stderr",
|
95 |
"text": [
|
96 |
-
"2021-05-10
|
97 |
" \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
|
98 |
" command:\n",
|
99 |
"\n",
|
100 |
" streamlit run /Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/ipykernel_launcher.py [ARGUMENTS]\n",
|
101 |
-
"100%|ββββββββββ| 6269/6269 [00:02<00:00,
|
102 |
]
|
103 |
}
|
104 |
],
|
@@ -108,7 +108,7 @@
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
-
"execution_count":
|
112 |
"metadata": {},
|
113 |
"outputs": [],
|
114 |
"source": [
|
@@ -117,14 +117,14 @@
|
|
117 |
},
|
118 |
{
|
119 |
"cell_type": "code",
|
120 |
-
"execution_count":
|
121 |
"metadata": {},
|
122 |
"outputs": [],
|
123 |
"source": [
|
124 |
"clf = LogisticRegression(\n",
|
125 |
" penalty=\"l1\",\n",
|
126 |
" C=0.05,#ModelConfigs.PENALTIES.value[np.random.randint(len(ModelConfigs.PENALTIES.value))],\n",
|
127 |
-
" solver=\"
|
128 |
" multi_class=\"auto\",\n",
|
129 |
" max_iter=500,\n",
|
130 |
" class_weight=\"balanced\",\n",
|
@@ -133,17 +133,14 @@
|
|
133 |
},
|
134 |
{
|
135 |
"cell_type": "code",
|
136 |
-
"execution_count":
|
137 |
"metadata": {},
|
138 |
"outputs": [
|
139 |
{
|
140 |
"output_type": "stream",
|
141 |
"name": "stdout",
|
142 |
"text": [
|
143 |
-
"CPU times: user
|
144 |
-
"Wall time: 1min 24s\n",
|
145 |
-
"/Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
|
146 |
-
" warnings.warn(\"The max_iter was reached which means \"\n"
|
147 |
]
|
148 |
},
|
149 |
{
|
@@ -151,11 +148,11 @@
|
|
151 |
"data": {
|
152 |
"text/plain": [
|
153 |
"LogisticRegression(C=0.05, class_weight='balanced', max_iter=500, penalty='l1',\n",
|
154 |
-
" solver='
|
155 |
]
|
156 |
},
|
157 |
"metadata": {},
|
158 |
-
"execution_count":
|
159 |
}
|
160 |
],
|
161 |
"source": [
|
@@ -163,6 +160,13 @@
|
|
163 |
"clf.fit(X, y)"
|
164 |
]
|
165 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
{
|
167 |
"cell_type": "code",
|
168 |
"execution_count": 14,
|
|
|
93 |
"output_type": "stream",
|
94 |
"name": "stderr",
|
95 |
"text": [
|
96 |
+
"2021-05-10 18:34:49.425 WARNING root: \n",
|
97 |
" \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
|
98 |
" command:\n",
|
99 |
"\n",
|
100 |
" streamlit run /Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/ipykernel_launcher.py [ARGUMENTS]\n",
|
101 |
+
"100%|ββββββββββ| 6269/6269 [00:02<00:00, 2750.45it/s]\n"
|
102 |
]
|
103 |
}
|
104 |
],
|
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
+
"execution_count": 5,
|
112 |
"metadata": {},
|
113 |
"outputs": [],
|
114 |
"source": [
|
|
|
117 |
},
|
118 |
{
|
119 |
"cell_type": "code",
|
120 |
+
"execution_count": 21,
|
121 |
"metadata": {},
|
122 |
"outputs": [],
|
123 |
"source": [
|
124 |
"clf = LogisticRegression(\n",
|
125 |
" penalty=\"l1\",\n",
|
126 |
" C=0.05,#ModelConfigs.PENALTIES.value[np.random.randint(len(ModelConfigs.PENALTIES.value))],\n",
|
127 |
+
" solver=\"liblinear\",\n",
|
128 |
" multi_class=\"auto\",\n",
|
129 |
" max_iter=500,\n",
|
130 |
" class_weight=\"balanced\",\n",
|
|
|
133 |
},
|
134 |
{
|
135 |
"cell_type": "code",
|
136 |
+
"execution_count": 22,
|
137 |
"metadata": {},
|
138 |
"outputs": [
|
139 |
{
|
140 |
"output_type": "stream",
|
141 |
"name": "stdout",
|
142 |
"text": [
|
143 |
+
"CPU times: user 1.45 s, sys: 10.6 ms, total: 1.46 s\nWall time: 1.46 s\n"
|
|
|
|
|
|
|
144 |
]
|
145 |
},
|
146 |
{
|
|
|
148 |
"data": {
|
149 |
"text/plain": [
|
150 |
"LogisticRegression(C=0.05, class_weight='balanced', max_iter=500, penalty='l1',\n",
|
151 |
+
" solver='liblinear')"
|
152 |
]
|
153 |
},
|
154 |
"metadata": {},
|
155 |
+
"execution_count": 22
|
156 |
}
|
157 |
],
|
158 |
"source": [
|
|
|
160 |
"clf.fit(X, y)"
|
161 |
]
|
162 |
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"execution_count": null,
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [],
|
168 |
+
"source": []
|
169 |
+
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
"execution_count": 14,
|