Pietro Lesci commited on
Commit
ae89532
β€’
1 Parent(s): cb547e1

Update wordifier_nb.ipynb

Browse files
Files changed (1) hide show
  1. notebooks/wordifier_nb.ipynb +16 -12
notebooks/wordifier_nb.ipynb CHANGED
@@ -93,12 +93,12 @@
93
  "output_type": "stream",
94
  "name": "stderr",
95
  "text": [
96
- "2021-05-10 14:30:04.984 WARNING root: \n",
97
  " \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
98
  " command:\n",
99
  "\n",
100
  " streamlit run /Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/ipykernel_launcher.py [ARGUMENTS]\n",
101
- "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6269/6269 [00:02<00:00, 2793.61it/s]\n"
102
  ]
103
  }
104
  ],
@@ -108,7 +108,7 @@
108
  },
109
  {
110
  "cell_type": "code",
111
- "execution_count": 6,
112
  "metadata": {},
113
  "outputs": [],
114
  "source": [
@@ -117,14 +117,14 @@
117
  },
118
  {
119
  "cell_type": "code",
120
- "execution_count": 11,
121
  "metadata": {},
122
  "outputs": [],
123
  "source": [
124
  "clf = LogisticRegression(\n",
125
  " penalty=\"l1\",\n",
126
  " C=0.05,#ModelConfigs.PENALTIES.value[np.random.randint(len(ModelConfigs.PENALTIES.value))],\n",
127
- " solver=\"saga\",\n",
128
  " multi_class=\"auto\",\n",
129
  " max_iter=500,\n",
130
  " class_weight=\"balanced\",\n",
@@ -133,17 +133,14 @@
133
  },
134
  {
135
  "cell_type": "code",
136
- "execution_count": 12,
137
  "metadata": {},
138
  "outputs": [
139
  {
140
  "output_type": "stream",
141
  "name": "stdout",
142
  "text": [
143
- "CPU times: user 1min 23s, sys: 138 ms, total: 1min 23s\n",
144
- "Wall time: 1min 24s\n",
145
- "/Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:329: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
146
- " warnings.warn(\"The max_iter was reached which means \"\n"
147
  ]
148
  },
149
  {
@@ -151,11 +148,11 @@
151
  "data": {
152
  "text/plain": [
153
  "LogisticRegression(C=0.05, class_weight='balanced', max_iter=500, penalty='l1',\n",
154
- " solver='saga')"
155
  ]
156
  },
157
  "metadata": {},
158
- "execution_count": 12
159
  }
160
  ],
161
  "source": [
@@ -163,6 +160,13 @@
163
  "clf.fit(X, y)"
164
  ]
165
  },
 
 
 
 
 
 
 
166
  {
167
  "cell_type": "code",
168
  "execution_count": 14,
 
93
  "output_type": "stream",
94
  "name": "stderr",
95
  "text": [
96
+ "2021-05-10 18:34:49.425 WARNING root: \n",
97
  " \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
98
  " command:\n",
99
  "\n",
100
  " streamlit run /Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/ipykernel_launcher.py [ARGUMENTS]\n",
101
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6269/6269 [00:02<00:00, 2750.45it/s]\n"
102
  ]
103
  }
104
  ],
 
108
  },
109
  {
110
  "cell_type": "code",
111
+ "execution_count": 5,
112
  "metadata": {},
113
  "outputs": [],
114
  "source": [
 
117
  },
118
  {
119
  "cell_type": "code",
120
+ "execution_count": 21,
121
  "metadata": {},
122
  "outputs": [],
123
  "source": [
124
  "clf = LogisticRegression(\n",
125
  " penalty=\"l1\",\n",
126
  " C=0.05,#ModelConfigs.PENALTIES.value[np.random.randint(len(ModelConfigs.PENALTIES.value))],\n",
127
+ " solver=\"liblinear\",\n",
128
  " multi_class=\"auto\",\n",
129
  " max_iter=500,\n",
130
  " class_weight=\"balanced\",\n",
 
133
  },
134
  {
135
  "cell_type": "code",
136
+ "execution_count": 22,
137
  "metadata": {},
138
  "outputs": [
139
  {
140
  "output_type": "stream",
141
  "name": "stdout",
142
  "text": [
143
+ "CPU times: user 1.45 s, sys: 10.6 ms, total: 1.46 s\nWall time: 1.46 s\n"
 
 
 
144
  ]
145
  },
146
  {
 
148
  "data": {
149
  "text/plain": [
150
  "LogisticRegression(C=0.05, class_weight='balanced', max_iter=500, penalty='l1',\n",
151
+ " solver='liblinear')"
152
  ]
153
  },
154
  "metadata": {},
155
+ "execution_count": 22
156
  }
157
  ],
158
  "source": [
 
160
  "clf.fit(X, y)"
161
  ]
162
  },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": null,
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": []
169
+ },
170
  {
171
  "cell_type": "code",
172
  "execution_count": 14,