Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -47,26 +47,19 @@ import librosa
|
|
47 |
|
48 |
########################ASR model###############################
|
49 |
|
50 |
-
from transformers import
|
51 |
|
52 |
-
|
53 |
-
processor =
|
54 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
55 |
-
model.config.forced_decoder_ids = None
|
56 |
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# generate token ids
|
63 |
-
predicted_ids = model.generate(input_features)
|
64 |
-
# decode token ids to text
|
65 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
66 |
-
|
67 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
68 |
-
|
69 |
-
return transcription
|
70 |
|
71 |
|
72 |
|
@@ -82,7 +75,7 @@ def print_like_dislike(x: gr.LikeData):
|
|
82 |
def upfile(files):
|
83 |
x = librosa.load(files, sr=16000)
|
84 |
print(x[0])
|
85 |
-
text =
|
86 |
return [text[0], text[0]]
|
87 |
|
88 |
def transcribe(audio):
|
|
|
47 |
|
48 |
########################ASR model###############################
|
49 |
|
50 |
+
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
|
51 |
|
52 |
+
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda")
|
53 |
+
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True)
|
|
|
|
|
54 |
|
55 |
+
def RallyListen(audio):
|
56 |
+
features = processor(audio, sampling_rate=16000, padding=True, return_tensors="pt")
|
57 |
+
input_features = features.input_features.to("cuda")
|
58 |
+
attention_mask = features.attention_mask.to("cuda")
|
59 |
|
60 |
+
gen_tokens = model.generate(input_features=input_features, attention_mask=attention_mask)
|
61 |
+
ret = processor.batch_decode(gen_tokens, skip_special_tokens=True)
|
62 |
+
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
|
|
|
75 |
def upfile(files):
|
76 |
x = librosa.load(files, sr=16000)
|
77 |
print(x[0])
|
78 |
+
text = RallyListen(x[0])
|
79 |
return [text[0], text[0]]
|
80 |
|
81 |
def transcribe(audio):
|