MikitaP commited on
Commit
2ccfaa0
β€’
1 Parent(s): d789ed7

Uploading food not food text classifier demo app.py

Browse files
Files changed (3) hide show
  1. README.md +12 -6
  2. app.py +46 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,18 @@
1
  ---
2
- title: Learn Hf Food Not Food Text Classifier Demo
3
- emoji: πŸš€
4
- colorFrom: gray
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 4.44.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
1
  ---
2
+ title: Food Not Food Text Classifier
3
+ emoji: πŸ—πŸš«πŸ₯‘
4
+ colorFrom: blue
5
+ colorTo: yellow
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: false
9
+ license: apache-2.0
10
  ---
11
 
12
+ # πŸ—πŸš«πŸ₯‘ Food Not Food Text Classifier
13
+
14
+ Small demo to showcase a text classifier to determine if a sentence is about food or not food.
15
+
16
+ DistillBERT model fine-tuned on a small synthetic dataset of 250 generated [Food or Not Food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
17
+
18
+ [Source code notebook](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 1. Import the required packages
2
+ import torch
3
+ import gradio as gr
4
+
5
+ from typing import Dict
6
+ from transformers import pipeline
7
+
8
+ # 2. Define function to use our model on given text
9
+ def food_not_food_classifier(text: str) -> Dict[str, float]:
10
+ # Set up text classification pipeline
11
+ food_not_food_classifier = pipeline(task="text-classification",
12
+ # Because our model is on Hugging Face already, we can pass in the model name directly
13
+ model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", # link to model on HF Hub
14
+ device="cuda" if torch.cuda.is_available() else "cpu",
15
+ top_k=None) # return all possible scores (not just top-1)
16
+
17
+ # Get outputs from pipeline (as a list of dicts)
18
+ outputs = food_not_food_classifier(text)[0]
19
+
20
+ # Format output for Gradio (e.g. {"label_1": probability_1, "label_2": probability_2})
21
+ output_dict = {}
22
+ for item in outputs:
23
+ output_dict[item["label"]] = item["score"]
24
+
25
+ return output_dict
26
+
27
+ # 3. Create a Gradio interface with details about our app
28
+ description = """
29
+ A text classifier to determine if a sentence is about food or not food.
30
+
31
+ Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
32
+
33
+ See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
34
+ """
35
+
36
+ demo = gr.Interface(fn=food_not_food_classifier,
37
+ inputs="text",
38
+ outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have)
39
+ title="πŸ—πŸš«πŸ₯‘ Food or Not Food Text Classifier",
40
+ description=description,
41
+ examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
42
+ ["A delicious photo of a plate of scrambled eggs, bacon and toast."]])
43
+
44
+ # 4. Launch the interface
45
+ if __name__ == "__main__":
46
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ torch
3
+ transformers