Mikhil-jivus
commited on
Commit
•
37ca5d0
1
Parent(s):
6fc221d
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,151 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
-
import torch
|
4 |
-
from transformers import (
|
5 |
-
AutoTokenizer,
|
6 |
-
AutoModelForCausalLM,
|
7 |
-
TextIteratorStreamer,
|
8 |
-
pipeline,
|
9 |
-
)
|
10 |
from threading import Thread
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Download and load model and tokenizer
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True,token=access_token)
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(
|
20 |
-
checkpoint, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True,token=access_token
|
21 |
-
)
|
22 |
-
|
23 |
-
# Text generation pipeline
|
24 |
-
phi2 = pipeline(
|
25 |
-
"text-generation",
|
26 |
-
tokenizer=tokenizer,
|
27 |
-
model=model,
|
28 |
-
pad_token_id=tokenizer.eos_token_id,
|
29 |
-
eos_token_id=tokenizer.eos_token_id,
|
30 |
-
device_map="auto",
|
31 |
-
)
|
32 |
-
|
33 |
-
|
34 |
-
# Function that accepts a prompt and generates text using the phi2 pipeline
|
35 |
-
def generate(message, chat_history, max_new_tokens):
|
36 |
-
instruction = "You are Abhishek Rai, Lead sales At PerfectSprout. Here is your Personality: He is energetic smart and has 17 years of sales experience. You are to strictly follow your personality and respond like Abhishek Rai on a cold Call. Be quick to judge the relevance of the pitch and proceed only if the product/pitch promises to add some value to your work. You possess comprehensive real-world knowledge, enabling you to scrutinize and challenge any implausible claims, inaccuracies, or conventional fallacies presented by a sales rep during a cold call."
|
37 |
-
final_prompt = f"Instruction: {instruction}\n"
|
38 |
-
|
39 |
-
for sent, received in chat_history:
|
40 |
-
final_prompt += "User: " + sent + "\n"
|
41 |
-
final_prompt += "Assistant: " + received + "\n"
|
42 |
|
43 |
-
final_prompt += "User: " + message + "\n"
|
44 |
-
final_prompt += "Output:"
|
45 |
|
46 |
-
# Streamer
|
47 |
-
streamer = TextIteratorStreamer(
|
48 |
-
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0
|
49 |
-
)
|
50 |
-
thread = Thread(
|
51 |
-
target=phi2,
|
52 |
-
kwargs={
|
53 |
-
"text_inputs": final_prompt,
|
54 |
-
"max_new_tokens": max_new_tokens,
|
55 |
-
"streamer": streamer,
|
56 |
-
},
|
57 |
-
)
|
58 |
-
thread.start()
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
if "Assistant:" in response:
|
69 |
-
response = response.split("Assistant:")[1].strip()
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
examples=[["Who is Leonhard Euler?"]],
|
95 |
-
)
|
96 |
|
97 |
-
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from threading import Thread
|
3 |
+
from typing import Iterator
|
4 |
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
DESCRIPTION = """\
|
13 |
+
# Llama 3.2 3B Instruct
|
14 |
+
Llama 3.2 3B is Meta's latest iteration of open LLMs.
|
15 |
+
This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
|
16 |
+
For more details, please check [our post](https://huggingface.co/blog/llama32).
|
17 |
+
"""
|
18 |
|
19 |
+
# Access token for the model (if required)
|
20 |
+
access_token = os.getenv('HF_TOKEN')
|
|
|
|
|
|
|
21 |
|
22 |
+
# Download the Base model
|
23 |
+
#model_id = "./models/Llama-32-3B-Instruct"
|
24 |
+
model_id = "Mikhil-jivus/Llama-32-3B-FineTuned-Instruct"
|
25 |
+
MAX_MAX_NEW_TOKENS = 2048
|
26 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
27 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
28 |
|
29 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
+
#model_id = "nltpt/Llama-3.2-3B-Instruct"
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id,token = access_token)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
device_map="auto",
|
36 |
+
torch_dtype=torch.bfloat16,
|
37 |
+
token = access_token
|
38 |
+
)
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
|
42 |
+
@spaces.GPU(duration=90)
|
43 |
+
def generate(
|
44 |
+
message: str,
|
45 |
+
chat_history: list[tuple[str, str]],
|
46 |
+
system_prompt: str,
|
47 |
+
max_new_tokens: int = 1024,
|
48 |
+
temperature: float = 0.6,
|
49 |
+
top_p: float = 0.9,
|
50 |
+
top_k: int = 50,
|
51 |
+
repetition_penalty: float = 1.2,
|
52 |
+
) -> Iterator[str]:
|
53 |
+
conversation = [{"role": "system", "content": system_prompt}]
|
54 |
+
for user, assistant in chat_history:
|
55 |
+
conversation.extend(
|
56 |
+
[
|
57 |
+
{"role": "user", "content": user},
|
58 |
+
{"role": "assistant", "content": assistant},
|
59 |
+
]
|
60 |
+
)
|
61 |
+
conversation.append({"role": "user", "content": message})
|
62 |
+
|
63 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
64 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
65 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
66 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
67 |
+
input_ids = input_ids.to(model.device)
|
68 |
+
|
69 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
70 |
+
generate_kwargs = dict(
|
71 |
+
{"input_ids": input_ids},
|
72 |
+
streamer=streamer,
|
73 |
+
max_new_tokens=max_new_tokens,
|
74 |
+
do_sample=True,
|
75 |
+
top_p=top_p,
|
76 |
+
top_k=top_k,
|
77 |
+
temperature=temperature,
|
78 |
+
num_beams=1,
|
79 |
+
repetition_penalty=repetition_penalty,
|
80 |
)
|
81 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
82 |
+
t.start()
|
83 |
+
|
84 |
+
outputs = []
|
85 |
+
for text in streamer:
|
86 |
+
outputs.append(text)
|
87 |
+
yield "".join(outputs)
|
88 |
+
|
89 |
+
|
90 |
+
chat_interface = gr.ChatInterface(
|
91 |
+
fn=generate,
|
92 |
+
additional_inputs=[
|
93 |
+
gr.Textbox(
|
94 |
+
label="System Prompt",
|
95 |
+
placeholder="Enter system prompt here...",
|
96 |
+
lines=2,
|
97 |
+
),
|
98 |
+
gr.Slider(
|
99 |
+
label="Max new tokens",
|
100 |
+
minimum=1,
|
101 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
102 |
+
step=1,
|
103 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
104 |
+
),
|
105 |
+
gr.Slider(
|
106 |
+
label="Temperature",
|
107 |
+
minimum=0.1,
|
108 |
+
maximum=4.0,
|
109 |
+
step=0.1,
|
110 |
+
value=0.6,
|
111 |
+
),
|
112 |
+
gr.Slider(
|
113 |
+
label="Top-p (nucleus sampling)",
|
114 |
+
minimum=0.05,
|
115 |
+
maximum=1.0,
|
116 |
+
step=0.05,
|
117 |
+
value=0.9,
|
118 |
+
),
|
119 |
+
gr.Slider(
|
120 |
+
label="Top-k",
|
121 |
+
minimum=1,
|
122 |
+
maximum=1000,
|
123 |
+
step=1,
|
124 |
+
value=50,
|
125 |
+
),
|
126 |
+
gr.Slider(
|
127 |
+
label="Repetition penalty",
|
128 |
+
minimum=1.0,
|
129 |
+
maximum=2.0,
|
130 |
+
step=0.05,
|
131 |
+
value=1.2,
|
132 |
+
),
|
133 |
+
],
|
134 |
+
stop_btn=None,
|
135 |
+
examples=[
|
136 |
+
["Hello there! How are you doing?"],
|
137 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
138 |
+
["Explain the plot of Cinderella in a sentence."],
|
139 |
+
["How many hours does it take a man to eat a Helicopter?"],
|
140 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
141 |
+
],
|
142 |
+
cache_examples=False,
|
143 |
+
)
|
144 |
|
145 |
+
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
146 |
+
gr.Markdown(DESCRIPTION)
|
147 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
148 |
+
chat_interface.render()
|
|
|
|
|
149 |
|
150 |
+
if __name__ == "__main__":
|
151 |
+
demo.queue(max_size=20).launch()
|