Spaces:
Running
Running
Commit
·
0c47f30
1
Parent(s):
bb1ee88
Исправлен путь к модели
Browse files
app.py
CHANGED
@@ -4,18 +4,21 @@ import torch.nn.functional as F
|
|
4 |
from transformers import AutoTokenizer
|
5 |
from model_SingleLabelClassifier import SingleLabelClassifier
|
6 |
from safetensors.torch import load_file
|
|
|
|
|
7 |
|
8 |
-
# --- Настройки ---
|
9 |
MODEL_NAME = "allenai/scibert_scivocab_uncased"
|
10 |
-
CHECKPOINT_PATH = "checkpoint-
|
11 |
-
NUM_CLASSES =
|
12 |
-
MAX_LEN =
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
@st.cache_resource
|
20 |
def load_model_and_tokenizer():
|
21 |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH)
|
@@ -27,7 +30,7 @@ def load_model_and_tokenizer():
|
|
27 |
|
28 |
model, tokenizer = load_model_and_tokenizer()
|
29 |
|
30 |
-
#
|
31 |
def predict(title, summary, model, tokenizer, id2label, max_length=320, top_k=3):
|
32 |
model.eval()
|
33 |
text = title + ". " + summary
|
@@ -48,9 +51,9 @@ def predict(title, summary, model, tokenizer, id2label, max_length=320, top_k=3)
|
|
48 |
top_indices = probs.argsort()[::-1][:top_k]
|
49 |
return [(id2label[i], round(probs[i], 3)) for i in top_indices]
|
50 |
|
51 |
-
#
|
52 |
st.title("ArXiv Tag Predictor")
|
53 |
-
st.write("Вставьте заголовок и аннотацию
|
54 |
|
55 |
title = st.text_input("**Title**")
|
56 |
summary = st.text_area("**Summary**", height=200)
|
|
|
4 |
from transformers import AutoTokenizer
|
5 |
from model_SingleLabelClassifier import SingleLabelClassifier
|
6 |
from safetensors.torch import load_file
|
7 |
+
import json
|
8 |
+
|
9 |
|
|
|
10 |
MODEL_NAME = "allenai/scibert_scivocab_uncased"
|
11 |
+
CHECKPOINT_PATH = "checkpoint-23985"
|
12 |
+
NUM_CLASSES = 65
|
13 |
+
MAX_LEN = 325020
|
14 |
|
15 |
+
# Загрузка меток
|
16 |
+
with open("label_mappings.json", "r") as f:
|
17 |
+
mappings = json.load(f)
|
18 |
+
abel2id = mappings["label2id"]
|
19 |
+
id2label = {int(k): v for k, v in mappings["id2label"].items()}
|
20 |
|
21 |
+
# Загрузка модели и токенизатора
|
22 |
@st.cache_resource
|
23 |
def load_model_and_tokenizer():
|
24 |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH)
|
|
|
30 |
|
31 |
model, tokenizer = load_model_and_tokenizer()
|
32 |
|
33 |
+
# Функция предсказания
|
34 |
def predict(title, summary, model, tokenizer, id2label, max_length=320, top_k=3):
|
35 |
model.eval()
|
36 |
text = title + ". " + summary
|
|
|
51 |
top_indices = probs.argsort()[::-1][:top_k]
|
52 |
return [(id2label[i], round(probs[i], 3)) for i in top_indices]
|
53 |
|
54 |
+
# Интерфейс Streamlit
|
55 |
st.title("ArXiv Tag Predictor")
|
56 |
+
st.write("Вставьте заголовок и аннотацию статьи!")
|
57 |
|
58 |
title = st.text_input("**Title**")
|
59 |
summary = st.text_area("**Summary**", height=200)
|