Spaces:
Running
Running
| # Copyright (C) 2021-2025, Mindee. | |
| # This program is licensed under the Apache License 2.0. | |
| # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
| import os | |
| from typing import Any | |
| import defusedxml.ElementTree as ET | |
| import numpy as np | |
| from tqdm import tqdm | |
| from .datasets import VisionDataset | |
| from .utils import convert_target_to_relative, crop_bboxes_from_image | |
| __all__ = ["IC03"] | |
| class IC03(VisionDataset): | |
| """IC03 dataset from `"ICDAR 2003 Robust Reading Competitions: Entries, Results and Future Directions" | |
| <http://www.iapr-tc11.org/mediawiki/index.php?title=ICDAR_2003_Robust_Reading_Competitions>`_. | |
| .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/ic03-grid.png&src=0 | |
| :align: center | |
| >>> from doctr.datasets import IC03 | |
| >>> train_set = IC03(train=True, download=True) | |
| >>> img, target = train_set[0] | |
| Args: | |
| train: whether the subset should be the training one | |
| use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
| recognition_task: whether the dataset should be used for recognition task | |
| detection_task: whether the dataset should be used for detection task | |
| **kwargs: keyword arguments from `VisionDataset`. | |
| """ | |
| TRAIN = ( | |
| "http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTrain/scene.zip", | |
| "9d86df514eb09dd693fb0b8c671ef54a0cfe02e803b1bbef9fc676061502eb94", | |
| "ic03_train.zip", | |
| ) | |
| TEST = ( | |
| "http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTest/scene.zip", | |
| "dbc4b5fd5d04616b8464a1b42ea22db351ee22c2546dd15ac35611857ea111f8", | |
| "ic03_test.zip", | |
| ) | |
| def __init__( | |
| self, | |
| train: bool = True, | |
| use_polygons: bool = False, | |
| recognition_task: bool = False, | |
| detection_task: bool = False, | |
| **kwargs: Any, | |
| ) -> None: | |
| url, sha256, file_name = self.TRAIN if train else self.TEST | |
| super().__init__( | |
| url, | |
| file_name, | |
| sha256, | |
| True, | |
| pre_transforms=convert_target_to_relative if not recognition_task else None, | |
| **kwargs, | |
| ) | |
| if recognition_task and detection_task: | |
| raise ValueError( | |
| "`recognition_task` and `detection_task` cannot be set to True simultaneously. " | |
| + "To get the whole dataset with boxes and labels leave both parameters to False." | |
| ) | |
| self.train = train | |
| self.data: list[tuple[str | np.ndarray, str | dict[str, Any] | np.ndarray]] = [] | |
| np_dtype = np.float32 | |
| # Load xml data | |
| tmp_root = ( | |
| os.path.join(self.root, "SceneTrialTrain" if self.train else "SceneTrialTest") if sha256 else self.root | |
| ) | |
| xml_tree = ET.parse(os.path.join(tmp_root, "words.xml")) | |
| xml_root = xml_tree.getroot() | |
| for image in tqdm(iterable=xml_root, desc="Preparing and Loading IC03", total=len(xml_root)): | |
| name, _resolution, rectangles = image | |
| # File existence check | |
| if not os.path.exists(os.path.join(tmp_root, name.text)): | |
| raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}") | |
| if use_polygons: | |
| # (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
| _boxes = [ | |
| [ | |
| [float(rect.attrib["x"]), float(rect.attrib["y"])], | |
| [float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])], | |
| [ | |
| float(rect.attrib["x"]) + float(rect.attrib["width"]), | |
| float(rect.attrib["y"]) + float(rect.attrib["height"]), | |
| ], | |
| [float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])], | |
| ] | |
| for rect in rectangles | |
| ] | |
| else: | |
| # x_min, y_min, x_max, y_max | |
| _boxes = [ | |
| [ | |
| float(rect.attrib["x"]), # type: ignore[list-item] | |
| float(rect.attrib["y"]), # type: ignore[list-item] | |
| float(rect.attrib["x"]) + float(rect.attrib["width"]), # type: ignore[list-item] | |
| float(rect.attrib["y"]) + float(rect.attrib["height"]), # type: ignore[list-item] | |
| ] | |
| for rect in rectangles | |
| ] | |
| # filter images without boxes | |
| if len(_boxes) > 0: | |
| boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype) | |
| # Get the labels | |
| labels = [lab.text for rect in rectangles for lab in rect if lab.text] | |
| if recognition_task: | |
| crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes) | |
| for crop, label in zip(crops, labels): | |
| if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0 and " " not in label: | |
| self.data.append((crop, label)) | |
| elif detection_task: | |
| self.data.append((name.text, boxes)) | |
| else: | |
| self.data.append((name.text, dict(boxes=boxes, labels=labels))) | |
| self.root = tmp_root | |
| def extra_repr(self) -> str: | |
| return f"train={self.train}" | |