MikeTrizna's picture
Upload folder using huggingface_hub
f3270e6 verified
raw
history blame
29.9 kB
import json
import shutil
import tempfile
from io import BytesIO
import cv2
import numpy as np
import pytest
import requests
import scipy.io as sio
from PIL import Image
from doctr.datasets.generator.base import synthesize_text_img
from doctr.io import reader
from doctr.utils import geometry
@pytest.fixture(scope="session")
def mock_vocab():
return (
"3K}7eé;5àÎYho]QwV6qU~W\"XnbBvcADfËmy.9ÔpÛ*{CôïE%M4#ÈR:g@T$x?0î£|za1ù8,OG€P-kçHëÀÂ2É/ûIJ'j"
"(LNÙFut[)èZs+&°Sd=Ï!<â_Ç>rêi`l"
)
@pytest.fixture(scope="session")
def mock_pdf(tmpdir_factory):
# Page 1
text_img = synthesize_text_img("I am a jedi!", background_color=(255, 255, 255), text_color=(0, 0, 0))
page = Image.new(text_img.mode, (1240, 1754), (255, 255, 255))
page.paste(text_img, (50, 100))
# Page 2
text_img = synthesize_text_img("No, I am your father.", background_color=(255, 255, 255), text_color=(0, 0, 0))
_page = Image.new(text_img.mode, (1240, 1754), (255, 255, 255))
_page.paste(text_img, (40, 300))
# Save the PDF
fn = tmpdir_factory.mktemp("data").join("mock_pdf_file.pdf")
page.save(str(fn), "PDF", save_all=True, append_images=[_page])
return str(fn)
@pytest.fixture(scope="session")
def mock_payslip(tmpdir_factory):
url = "https://3.bp.blogspot.com/-Es0oHTCrVEk/UnYA-iW9rYI/AAAAAAAAAFI/hWExrXFbo9U/s1600/003.jpg"
file = BytesIO(requests.get(url).content)
folder = tmpdir_factory.mktemp("data")
fn = str(folder.join("mock_payslip.jpeg"))
with open(fn, "wb") as f:
f.write(file.getbuffer())
return fn
@pytest.fixture(scope="session")
def mock_tilted_payslip(mock_payslip, tmpdir_factory):
image = reader.read_img_as_numpy(mock_payslip)
image = geometry.rotate_image(image, 30, expand=True)
tmp_path = str(tmpdir_factory.mktemp("data").join("mock_tilted_payslip.jpg"))
cv2.imwrite(tmp_path, image)
return tmp_path
@pytest.fixture(scope="session")
def mock_text_box_stream():
url = "https://doctr-static.mindee.com/models?id=v0.5.1/word-crop.png&src=0"
return requests.get(url).content
@pytest.fixture(scope="session")
def mock_text_box(mock_text_box_stream, tmpdir_factory):
file = BytesIO(mock_text_box_stream)
fn = tmpdir_factory.mktemp("data").join("mock_text_box_file.png")
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(fn)
@pytest.fixture(scope="session")
def mock_image_stream():
url = "https://miro.medium.com/max/3349/1*mk1-6aYaf_Bes1E3Imhc0A.jpeg"
return requests.get(url).content
@pytest.fixture(scope="session")
def mock_artefact_image_stream():
url = "https://github.com/mindee/doctr/releases/download/v0.8.1/artefact_dummy.jpg"
return requests.get(url).content
@pytest.fixture(scope="session")
def mock_image_path(mock_image_stream, tmpdir_factory):
file = BytesIO(mock_image_stream)
folder = tmpdir_factory.mktemp("images")
fn = folder.join("mock_image_file.jpeg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(fn)
@pytest.fixture(scope="session")
def mock_image_folder(mock_image_stream, tmpdir_factory):
file = BytesIO(mock_image_stream)
folder = tmpdir_factory.mktemp("images")
for i in range(5):
fn = folder.join("mock_image_file_" + str(i) + ".jpeg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(folder)
@pytest.fixture(scope="session")
def mock_detection_label(tmpdir_factory):
folder = tmpdir_factory.mktemp("labels")
labels = {}
for idx in range(5):
labels[f"mock_image_file_{idx}.jpeg"] = {
"img_dimensions": (800, 600),
"img_hash": "dummy_hash",
"polygons": [
[[1, 2], [1, 3], [2, 1], [2, 3]],
[[10, 20], [10, 30], [20, 10], [20, 30]],
[[3, 2], [3, 3], [4, 1], [4, 3]],
[[30, 20], [30, 30], [40, 10], [40, 30]],
],
}
labels_path = folder.join("labels.json")
with open(labels_path, "w") as f:
json.dump(labels, f)
return str(labels_path)
@pytest.fixture(scope="session")
def mock_recognition_label(tmpdir_factory):
label_file = tmpdir_factory.mktemp("labels").join("labels.json")
label = {
"mock_image_file_0.jpeg": "I",
"mock_image_file_1.jpeg": "am",
"mock_image_file_2.jpeg": "a",
"mock_image_file_3.jpeg": "jedi",
"mock_image_file_4.jpeg": "!",
}
with open(label_file, "w") as f:
json.dump(label, f)
return str(label_file)
@pytest.fixture(scope="session")
def mock_ocrdataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("dataset")
label_file = root.join("labels.json")
label = {
"mock_image_file_0.jpg": {
"typed_words": [
{"value": "I", "geometry": (0.2, 0.2, 0.1, 0.1, 0)},
{"value": "am", "geometry": (0.5, 0.5, 0.1, 0.1, 0)},
]
},
"mock_image_file_1.jpg": {
"typed_words": [
{"value": "a", "geometry": (0.2, 0.2, 0.1, 0.1, 0)},
{"value": "jedi", "geometry": (0.5, 0.5, 0.1, 0.1, 0)},
]
},
"mock_image_file_2.jpg": {
"typed_words": [
{"value": "!", "geometry": (0.2, 0.2, 0.1, 0.1, 0)},
]
},
}
with open(label_file, "w") as f:
json.dump(label, f)
file = BytesIO(mock_image_stream)
image_folder = tmpdir_factory.mktemp("images")
for i in range(3):
fn = image_folder.join(f"mock_image_file_{i}.jpg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(image_folder), str(label_file)
@pytest.fixture(scope="session")
def mock_ic13(tmpdir_factory, mock_image_stream):
file = BytesIO(mock_image_stream)
image_folder = tmpdir_factory.mktemp("images")
label_folder = tmpdir_factory.mktemp("labels")
labels = [
"100, 100, 200, 200, 'I'\n",
"250, 300, 455, 678, 'am'\n",
"321, 485, 529, 607, 'a'\n",
"235, 121, 325, 621, 'jedi'\n",
"468, 589, 1120, 2520, '!'",
]
for i in range(5):
fn_l = label_folder.join(f"gt_mock_image_file_{i}.txt")
with open(fn_l, "w") as f:
f.writelines(labels)
fn_i = image_folder.join(f"mock_image_file_{i}.jpg")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
return str(image_folder), str(label_folder)
@pytest.fixture(scope="session")
def mock_imgur5k(tmpdir_factory, mock_image_stream):
file = BytesIO(mock_image_stream)
image_folder = tmpdir_factory.mktemp("images")
label_folder = tmpdir_factory.mktemp("dataset_info")
labels = {
"index_id": {
"YsaVkzl": {
"image_url": "https://i.imgur.com/YsaVkzl.jpg",
"image_path": "/path/to/IMGUR5K-Handwriting-Dataset/images/YsaVkzl.jpg",
"image_hash": "993a7cbb04a7c854d1d841b065948369",
},
"wz3wHhN": {
"image_url": "https://i.imgur.com/wz3wHhN.jpg",
"image_path": "/path/to/IMGUR5K-Handwriting-Dataset/images/wz3wHhN.jpg",
"image_hash": "9157426a98ee52f3e1e8d41fa3a99175",
},
"BRHSP23": {
"image_url": "https://i.imgur.com/BRHSP23.jpg",
"image_path": "/path/to/IMGUR5K-Handwriting-Dataset/images/BRHSP23.jpg",
"image_hash": "aab01f7ac82ae53845b01674e9e34167",
},
},
"index_to_ann_map": {
"YsaVkzl": ["YsaVkzl_0", "YsaVkzl_1"],
"wz3wHhN": ["wz3wHhN_0", "wz3wHhN_1"],
"BRHSP23": ["BRHSP23_0", "BRHSP23_1"],
},
"ann_id": {
"YsaVkzl_0": {"word": "I", "bounding_box": "[305.33, 850.67, 432.33, 115.33, 5.0]"},
"YsaVkzl_1": {"word": "am", "bounding_box": "[546.67, 455.67, 345.0, 212.33, 18.67]"},
"wz3wHhN_0": {"word": "a", "bounding_box": "[544.67, 345.67, 76.0, 222.33, 34.67]"},
"wz3wHhN_1": {"word": "jedi", "bounding_box": "[545.0, 437.0, 76.67, 201.0, 23.33]"},
"BRHSP23_0": {"word": "!", "bounding_box": "[555.67, 432.67, 220.0, 120.33, 7.67]"},
"BRHSP23_1": {"word": "!", "bounding_box": "[566.0, 437.0, 76.67, 201.0, 25.33]"},
},
}
label_file = label_folder.join("imgur5k_annotations.json")
with open(label_file, "w") as f:
json.dump(labels, f)
for index_id in ["YsaVkzl", "wz3wHhN", "BRHSP23"]:
fn_i = image_folder.join(f"{index_id}.jpg")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
return str(image_folder), str(label_file)
@pytest.fixture(scope="session")
def mock_svhn_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
svhn_root = root.mkdir("svhn")
train_root = svhn_root.mkdir("train")
file = BytesIO(mock_image_stream)
# NOTE: hdf5storage seems not to be maintained anymore, ref.: https://github.com/frejanordsiek/hdf5storage/pull/134
# Instead we download the mocked data which was generated using the following code:
# ascii image names
# first = np.array([[49], [46], [112], [110], [103]], dtype=np.int16) # 1.png
# second = np.array([[50], [46], [112], [110], [103]], dtype=np.int16) # 2.png
# third = np.array([[51], [46], [112], [110], [103]], dtype=np.int16) # 3.png
# labels: label is also ascii
# label = {
# "height": [35, 35, 35, 35],
# "label": [1, 1, 3, 7],
# "left": [116, 128, 137, 151],
# "top": [27, 29, 29, 26],
# "width": [15, 10, 17, 17],
# }
# matcontent = {"digitStruct": {"name": [first, second, third], "bbox": [label, label, label]}}
# Mock train data
# hdf5storage.write(matcontent, filename=train_root.join("digitStruct.mat"))
# Downloading the mocked data
url = "https://github.com/mindee/doctr/releases/download/v0.9.0/digitStruct.mat"
response = requests.get(url)
with open(train_root.join("digitStruct.mat"), "wb") as f:
f.write(response.content)
for i in range(3):
fn = train_root.join(f"{i + 1}.png")
with open(fn, "wb") as f:
f.write(file.getbuffer())
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("svhn_train.tar")
shutil.make_archive(root.join("svhn_train"), "tar", str(svhn_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_sroie_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
sroie_root = root.mkdir("sroie2019_train_task1")
annotations_folder = sroie_root.mkdir("annotations")
image_folder = sroie_root.mkdir("images")
labels = [
"72, 25, 326, 25, 326, 64, 72, 64, 'I'\n",
"50, 82, 440, 82, 440, 121, 50, 121, 'am'\n",
"205, 121, 285, 121, 285, 139, 205, 139, 'a'\n",
"18, 250, 440, 320, 250, 64, 85, 121, 'jedi'\n",
"400, 112, 252, 84, 112, 84, 75, 88, '!'",
]
file = BytesIO(mock_image_stream)
for i in range(3):
fn_i = image_folder.join(f"{i}.jpg")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
fn_l = annotations_folder.join(f"{i}.txt")
with open(fn_l, "w") as f:
f.writelines(labels)
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("sroie2019_train_task1.zip")
shutil.make_archive(root.join("sroie2019_train_task1"), "zip", str(sroie_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_funsd_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
funsd_root = root.mkdir("funsd")
sub_dataset_root = funsd_root.mkdir("dataset")
train_root = sub_dataset_root.mkdir("training_data")
image_folder = train_root.mkdir("images")
annotations_folder = train_root.mkdir("annotations")
labels = {
"form": [
{
"box": [84, 109, 136, 119],
"text": "I",
"label": "question",
"words": [{"box": [84, 109, 136, 119], "text": "I"}],
"linking": [[0, 37]],
"id": 0,
},
{
"box": [85, 110, 145, 120],
"text": "am",
"label": "answer",
"words": [{"box": [85, 110, 145, 120], "text": "am"}],
"linking": [[1, 38]],
"id": 1,
},
{
"box": [86, 115, 150, 125],
"text": "Luke",
"label": "answer",
"words": [{"box": [86, 115, 150, 125], "text": "Luke"}],
"linking": [[2, 44]],
"id": 2,
},
]
}
file = BytesIO(mock_image_stream)
for i in range(3):
fn_i = image_folder.join(f"{i}.png")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
fn_l = annotations_folder.join(f"{i}.json")
with open(fn_l, "w") as f:
json.dump(labels, f)
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("funsd.zip")
shutil.make_archive(root.join("funsd"), "zip", str(funsd_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_cord_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
cord_root = root.mkdir("cord_train")
image_folder = cord_root.mkdir("image")
annotations_folder = cord_root.mkdir("json")
labels = {
"dontcare": [],
"valid_line": [
{
"words": [
{
"quad": {
"x2": 270,
"y3": 390,
"x3": 270,
"y4": 390,
"x1": 256,
"y1": 374,
"x4": 256,
"y2": 374,
},
"is_key": 0,
"row_id": 2179893,
"text": "I",
}
],
"category": "menu.cnt",
"group_id": 3,
},
{
"words": [
{
"quad": {
"x2": 270,
"y3": 418,
"x3": 270,
"y4": 418,
"x1": 258,
"y1": 402,
"x4": 258,
"y2": 402,
},
"is_key": 0,
"row_id": 2179894,
"text": "am",
}
],
"category": "menu.cnt",
"group_id": 4,
},
{
"words": [
{
"quad": {
"x2": 272,
"y3": 444,
"x3": 272,
"y4": 444,
"x1": 258,
"y1": 428,
"x4": 258,
"y2": 428,
},
"is_key": 0,
"row_id": 2179895,
"text": "Luke",
}
],
"category": "menu.cnt",
"group_id": 5,
},
],
}
file = BytesIO(mock_image_stream)
for i in range(3):
fn_i = image_folder.join(f"receipt_{i}.png")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
fn_l = annotations_folder.join(f"receipt_{i}.json")
with open(fn_l, "w") as f:
json.dump(labels, f)
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("cord_train.zip")
shutil.make_archive(root.join("cord_train"), "zip", str(cord_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_synthtext_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
synthtext_root = root.mkdir("SynthText")
image_folder = synthtext_root.mkdir("8")
annotation_file = synthtext_root.join("gt.mat")
labels = {
"imnames": [[["8/ballet_106_0.jpg"], ["8/ballet_106_1.jpg"], ["8/ballet_106_2.jpg"]]],
"wordBB": [[np.random.randint(1000, size=(2, 4, 5)) for _ in range(3)]],
"txt": [np.array([["I ", "am\na ", "Jedi ", "!"] for _ in range(3)])],
}
# hacky trick to write file into a LocalPath object with scipy.io.savemat
with tempfile.NamedTemporaryFile(mode="wb", delete=True) as f:
sio.savemat(f.name, labels)
shutil.copy(f.name, str(annotation_file))
file = BytesIO(mock_image_stream)
for i in range(3):
fn_i = image_folder.join(f"ballet_106_{i}.jpg")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("SynthText.zip")
shutil.make_archive(root.join("SynthText"), "zip", str(synthtext_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_doc_artefacts(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
doc_root = root.mkdir("artefact_detection")
labels = {
"0.jpg": [
{"geometry": [0.94375, 0.4013671875, 0.99375, 0.4365234375], "label": "bar_code"},
{"geometry": [0.03125, 0.6923828125, 0.07875, 0.7294921875], "label": "qr_code"},
{"geometry": [0.1975, 0.1748046875, 0.39875, 0.2216796875], "label": "bar_code"},
],
"1.jpg": [
{"geometry": [0.94375, 0.4013671875, 0.99375, 0.4365234375], "label": "bar_code"},
{"geometry": [0.03125, 0.6923828125, 0.07875, 0.7294921875], "label": "qr_code"},
{"geometry": [0.1975, 0.1748046875, 0.39875, 0.2216796875], "label": "background"},
],
"2.jpg": [
{"geometry": [0.94375, 0.4013671875, 0.99375, 0.4365234375], "label": "logo"},
{"geometry": [0.03125, 0.6923828125, 0.07875, 0.7294921875], "label": "qr_code"},
{"geometry": [0.1975, 0.1748046875, 0.39875, 0.2216796875], "label": "photo"},
],
}
train_root = doc_root.mkdir("train")
label_file = train_root.join("labels.json")
with open(label_file, "w") as f:
json.dump(labels, f)
image_folder = train_root.mkdir("images")
file = BytesIO(mock_image_stream)
for i in range(3):
fn = image_folder.join(f"{i}.jpg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("artefact_detection.zip")
shutil.make_archive(root.join("artefact_detection"), "zip", str(doc_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_iiit5k_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
iiit5k_root = root.mkdir("IIIT5K")
image_folder = iiit5k_root.mkdir("train")
annotation_file = iiit5k_root.join("trainCharBound.mat")
labels = {
"trainCharBound": {"ImgName": ["train/0.png"], "chars": ["I"], "charBB": np.random.randint(50, size=(1, 4))},
}
# hacky trick to write file into a LocalPath object with scipy.io.savemat
with tempfile.NamedTemporaryFile(mode="wb", delete=True) as f:
sio.savemat(f.name, labels)
shutil.copy(f.name, str(annotation_file))
file = BytesIO(mock_image_stream)
for i in range(1):
fn_i = image_folder.join(f"{i}.png")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("IIIT5K-Word-V3.tar")
shutil.make_archive(root.join("IIIT5K-Word-V3"), "tar", str(iiit5k_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_svt_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
svt_root = root.mkdir("svt1")
labels = """<tagset><image><imageName>img/00_00.jpg</imageName>
<address>341 Southwest 10th Avenue Portland OR</address><lex>LIVING,ROOM,THEATERS</lex>
<Resolution x="1280" y="880"/><taggedRectangles><taggedRectangle height="75" width="236" x="375" y="253">
<tag>LIVING</tag></taggedRectangle></taggedRectangles></image><image><imageName>img/00_01.jpg</imageName>
<address>1100 Southwest 6th Avenue Portland OR</address><lex>LULA</lex><Resolution x="1650" y="500"/>
<taggedRectangles><taggedRectangle height="80" width="250" x="450" y="242"><tag>HOUSE</tag></taggedRectangle>
</taggedRectangles></image><image><imageName>img/00_02.jpg</imageName>
<address>341 Southwest 10th Avenue Portland OR</address><lex>LIVING,ROOM,THEATERS</lex><Resolution x="850" y="420"/>
<taggedRectangles><taggedRectangle height="100" width="250" x="350" y="220"><tag>COST</tag></taggedRectangle>
</taggedRectangles></image></tagset>"""
with open(svt_root.join("train.xml"), "w") as f:
f.write(labels)
image_folder = svt_root.mkdir("img")
file = BytesIO(mock_image_stream)
for i in range(3):
fn = image_folder.join(f"00_0{i}.jpg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("svt.zip")
shutil.make_archive(root.join("svt"), "zip", str(svt_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_ic03_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
ic03_root = root.mkdir("SceneTrialTrain")
labels = """<tagset><image><imageName>images/0.jpg</imageName><Resolution x="1280" y="880"/><taggedRectangles>
<taggedRectangle x="174.0" y="392.0" width="274.0" height="195.0" offset="0.0" rotation="0.0"><tag>LIVING</tag>
</taggedRectangle></taggedRectangles></image><image><imageName>images/1.jpg</imageName>
<Resolution x="1650" y="500"/>
<taggedRectangles><taggedRectangle x="244.0" y="440.0" width="300.0" height="220.0" offset="0.0" rotation="0.0">
<tag>HOUSE</tag></taggedRectangle></taggedRectangles></image><image><imageName>images/2.jpg</imageName>
<Resolution x="850" y="420"/><taggedRectangles>
<taggedRectangle x="180.0" y="400.0" width="280.0" height="250.0" offset="0.0" rotation="0.0"><tag>COST</tag>
</taggedRectangle></taggedRectangles></image></tagset>"""
with open(ic03_root.join("words.xml"), "w") as f:
f.write(labels)
image_folder = ic03_root.mkdir("images")
file = BytesIO(mock_image_stream)
for i in range(3):
fn = image_folder.join(f"{i}.jpg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
# Packing data into an archive to simulate the real data set and bypass archive extraction
archive_path = root.join("ic03_train.zip")
shutil.make_archive(root.join("ic03_train"), "zip", str(ic03_root))
return str(archive_path)
@pytest.fixture(scope="session")
def mock_mjsynth_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
mjsynth_root = root.mkdir("mjsynth")
image_folder = mjsynth_root.mkdir("images")
label_file = mjsynth_root.join("imlist.txt")
labels = [
"./mjsynth/images/12_I_34.jpg\n",
"./mjsynth/images/12_am_34.jpg\n",
"./mjsynth/images/12_a_34.jpg\n",
"./mjsynth/images/12_Jedi_34.jpg\n",
"./mjsynth/images/12_!_34.jpg\n",
]
with open(label_file, "w") as f:
for label in labels:
f.write(label)
file = BytesIO(mock_image_stream)
for i in ["I", "am", "a", "Jedi", "!"]:
fn = image_folder.join(f"12_{i}_34.jpg")
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(root), str(label_file)
@pytest.fixture(scope="session")
def mock_iiithws_dataset(tmpdir_factory, mock_image_stream):
root = tmpdir_factory.mktemp("datasets")
iiithws_root = root.mkdir("iiit-hws")
image_folder = iiithws_root.mkdir("Images_90K_Normalized")
image_sub_folder = image_folder.mkdir("1")
label_file = iiithws_root.join("IIIT-HWS-90K.txt")
labels = [
"./iiit-hws/Images_90K_Normalized/1/499_5_3_0_0.png I 1 0\n",
"./iiit-hws/Images_90K_Normalized/1/117_1_3_0_0.png am 1 0\n",
"./iiit-hws/Images_90K_Normalized/1/80_7_3_0_0.png a 1 0\n",
"./iiit-hws/Images_90K_Normalized/1/585_3_2_0_0.png Jedi 1 0\n",
"./iiit-hws/Images_90K_Normalized/1/222_5_3_0_0.png ! 1 0\n",
]
with open(label_file, "w") as f:
for label in labels:
f.write(label)
file = BytesIO(mock_image_stream)
for label in labels:
fn = image_sub_folder.join(label.split()[0].split("/")[-1])
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(root), str(label_file)
@pytest.fixture(scope="session")
def mock_wildreceipt_dataset(tmpdir_factory, mock_image_stream):
file = BytesIO(mock_image_stream)
root = tmpdir_factory.mktemp("datasets")
wildreceipt_root = root.mkdir("wildreceipt")
annotations_folder = wildreceipt_root
image_folder = wildreceipt_root.mkdir("image_files")
labels = {
"file_name": "Image_58/20/receipt_0.jpeg",
"height": 348,
"width": 348,
"annotations": [
{"box": [263.0, 283.0, 325.0, 283.0, 325.0, 260.0, 263.0, 260.0], "text": "$55.96", "label": 17},
{"box": [274.0, 308.0, 326.0, 308.0, 326.0, 286.0, 274.0, 286.0], "text": "$4.48", "label": 19},
],
}
labels2 = {
"file_name": "Image_58/20/receipt_1.jpeg",
"height": 348,
"width": 348,
"annotations": [
{"box": [386.0, 409.0, 599.0, 409.0, 599.0, 373.0, 386.0, 373.0], "text": "089-46169340", "label": 5}
],
}
annotation_file = annotations_folder.join("train.txt")
with open(annotation_file, "w") as f:
json.dump(labels, f)
f.write("\n")
json.dump(labels2, f)
f.write("\n")
file = BytesIO(mock_image_stream)
wildreceipt_image_folder = image_folder.mkdir("Image_58")
wildreceipt_image_folder = wildreceipt_image_folder.mkdir("20")
for i in range(2):
fn_i = wildreceipt_image_folder.join(f"receipt_{i}.jpeg")
with open(fn_i, "wb") as f:
f.write(file.getbuffer())
return str(image_folder), str(annotation_file)
@pytest.fixture(scope="session")
def mock_cocotext_dataset(tmpdir_factory, mock_image_stream):
file = BytesIO(mock_image_stream)
root = tmpdir_factory.mktemp("datasets")
cocotext_root = root.mkdir("cocotext")
annotations_folder = cocotext_root
image_folder = cocotext_root.mkdir("train2014")
filenames = [
"COCO_train2014_000000353709.jpg",
"COCO_train2014_000000077346.jpg",
"COCO_train2014_000000437996.jpg",
]
labels = {
"cats": {},
"anns": {
"1": {
"mask": [286.1, 215.5, 285.2, 221.5, 304.6, 222.0, 304.6, 216.9],
"class": "machine printed",
"bbox": [285.2, 215.5, 19.4, 6.5],
"image_id": 367969,
"id": 108418,
"language": "english",
"area": 105.6,
"utf8_string": "GATO",
"legibility": "legible",
},
"2": {
"mask": [310.4, 304.6, 319.4, 302.1, 323.2, 318.1, 307.2, 318.1],
"class": "machine printed",
"bbox": [307.2, 302.1, 16.0, 16.0],
"image_id": 77346,
"id": 196817,
"language": "english",
"area": 184.75,
"utf8_string": "6",
"legibility": "legible",
},
"3": {
"mask": [212.6, 245.8, 210.1, 248.6, 212.0, 262.8, 221.9, 260.9, 227.4, 244.6],
"class": "machine printed",
"bbox": [210.1, 244.6, 17.3, 18.2],
"image_id": 437996,
"id": 134765,
"language": "english",
"area": 221.31,
"utf8_string": "17",
"legibility": "legible",
},
},
"imgs": {
"367969": {"id": 367969, "set": "train", "width": 640, "file_name": f"{filenames[0]}", "height": 427},
"77346": {"id": 77346, "set": "train", "width": 640, "file_name": f"{filenames[1]}", "height": 427},
"437996": {"id": 437996, "set": "train", "width": 640, "file_name": f"{filenames[2]}", "height": 427},
},
"imgToAnns": {},
"info": {},
}
annotation_file = annotations_folder.join("cocotext.v2.json")
with open(annotation_file, "w") as f:
json.dump(labels, f)
file = BytesIO(mock_image_stream)
for img_name in filenames:
fn = image_folder.join(f"{img_name}")
with open(fn, "wb") as f:
f.write(file.getbuffer())
return str(image_folder), str(annotation_file)