Spaces:
Runtime error
Runtime error
| from pdfminer.high_level import extract_text | |
| from pdf2image import convert_from_path # Convert PDF pages to images | |
| import base64 | |
| import io | |
| import os | |
| from PIL import Image | |
| import json | |
| from openai import OpenAI | |
| from dotenv import load_dotenv | |
| import gradio as gr | |
| load_dotenv() | |
| client = OpenAI() | |
| # Function to encode image to Base64 | |
| def encode_image(image_input): | |
| """ | |
| Encode an image to Base64. | |
| Supports both file paths (str) and in-memory PIL images. | |
| """ | |
| if isinstance(image_input, str): # If input is a file path | |
| with open(image_input, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode("utf-8") | |
| elif isinstance(image_input, Image.Image): # If input is a PIL image | |
| buffered = io.BytesIO() | |
| image_input.save(buffered, format="JPEG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| else: | |
| raise ValueError("Unsupported input type. Provide a file path or a PIL image.") | |
| # Function to process image files | |
| def process_image(image_path): | |
| print(f"πΌοΈ Processing image file: {image_path}") | |
| image_base64 = encode_image(image_path) | |
| image_url = f"data:image/jpeg;base64,{image_base64}" | |
| response = client.chat.completions.create( | |
| model="gpt-4o", | |
| messages=[ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": "Extract all text from this image."}, | |
| {"type": "image_url", "image_url": {"url": image_url}}, | |
| ], | |
| } | |
| ], | |
| ) | |
| extracted_text = response.choices[0].message.content.strip() | |
| # print(f"π Extracted text: {extracted_text}") | |
| return extracted_text | |
| # Function to process text-based PDFs | |
| def process_text_pdf(pdf_path): | |
| text_content = extract_text(pdf_path).strip() | |
| if text_content: | |
| print(f"π Extracting text from PDF: {pdf_path}") | |
| return text_content | |
| return None # No text found, fallback to image processing | |
| # Function to process scanned PDFs (image-based) | |
| def process_image_pdf(pdf_path): | |
| print(f"πΌοΈ No text found! Processing as an image-based (scanned) PDF: {pdf_path}") | |
| images = convert_from_path(pdf_path) | |
| extracted_text = [] | |
| for i, image in enumerate(images): | |
| image_text = process_image(image) | |
| extracted_text.append(image_text) | |
| return "\n\n".join(extracted_text) | |
| # Function to detect file type and extract text accordingly | |
| def process_file(file_path): | |
| if not os.path.exists(file_path): | |
| print(f"β Error: File not found: {file_path}") | |
| return None | |
| file_extension = file_path.lower().split(".")[-1] | |
| if file_extension in ["jpg", "jpeg", "png"]: | |
| return process_image(file_path) # Process images | |
| elif file_extension == "pdf": | |
| text_data = process_text_pdf(file_path) | |
| if text_data: # If text extraction succeeds, return it | |
| return text_data | |
| return process_image_pdf(file_path) # Otherwise, process as image | |
| else: | |
| print(f"β Unsupported file type: {file_path}") | |
| return None | |
| def extract_certificate_details(certificate_path): | |
| certificate_text = process_file(certificate_path) | |
| print(f"πΌοΈ Extracting details from certificate: {certificate_path}") | |
| if not certificate_text: | |
| print(f"β Error: Certificate text could not be extracted from {certificate_path}") | |
| return None | |
| # Ask GPT-4o to extract the details | |
| response = client.chat.completions.create( | |
| model="gpt-4o", | |
| response_format={ "type": "json_object" }, | |
| seed=123, | |
| temperature=0, | |
| messages=[ | |
| { | |
| "role": "developer", | |
| "content": f"""Extract the following details from the certificate text in JSON format, leave blank if not found: | |
| {{ | |
| "Certificate Name": "", | |
| "Certificate ID": "", | |
| "Ship Name": "", | |
| "Date of Issue": "", | |
| "Expiration Date": "" | |
| }} | |
| Certificate Text: | |
| {certificate_text} | |
| """ | |
| } | |
| ], | |
| ) | |
| result = response.choices[0].message.content | |
| result_json = json.loads(result) # Parse the result as JSON | |
| certificate_name = result_json.get("Certificate Name", "") | |
| certificate_id = result_json.get("Certificate ID", "") | |
| ship_name = result_json.get("Ship Name", "") | |
| date_of_issue = result_json.get("Date of Issue", "") | |
| expiration_date = result_json.get("Expiration Date", "") | |
| print(f"β Extracted details:\n- Certificate Name: {certificate_name}\n- Certificate ID: {certificate_id}\n- Ship Name: {ship_name}\n- Date of Issue: {date_of_issue}\n- Expiration Date: {expiration_date}") | |
| return { | |
| "Certificate Name": certificate_name, | |
| "Certificate ID": certificate_id, | |
| "Ship Name": ship_name, | |
| "Date of Issue": date_of_issue, | |
| "Expiration Date": expiration_date, | |
| "Certificate Text": certificate_text | |
| } | |
| # Function to compare two certificates using AI | |
| def compare_certificates(new_cert_details, old_cert_details): | |
| # Ask GPT-4o to compare the texts | |
| response = client.chat.completions.create( | |
| model="gpt-4o", | |
| messages=[ | |
| { | |
| "role": "user", | |
| "content": f"""Compare the two certificates below and provide a structured summary highlighting key differences in the format below: | |
| ### Comparison Summary: | |
| - Identify differences in terms of: | |
| - Certificate ID | |
| - Date of Issue | |
| - Expiration Date | |
| - Highlight any changes in other key details, if applicable. | |
| ### Take Note: | |
| - Clearly structure the output for easy reading | |
| - Do not include any structural changes in the text, only content changes | |
| ### Old Certificate: | |
| {old_cert_details} | |
| ### New Certificate: | |
| {new_cert_details}""" | |
| } | |
| ], | |
| ) | |
| comparison_result = response.choices[0].message.content.strip() | |
| return comparison_result | |
| def gradio_process_certificate(certificate, old_cert_details=""): | |
| # Process the certificate | |
| cert_details = extract_certificate_details(certificate) | |
| if not cert_details: | |
| return "β Failed to extract certificate details." | |
| # If old_certificate is provided, compare the certificates | |
| if old_cert_details: | |
| print(f"π Comparing certificates") | |
| # Compare the certificates | |
| comparison_result = compare_certificates(cert_details, old_cert_details) | |
| # Return both certificate details and comparison result | |
| return { | |
| "new_certificate": cert_details, | |
| "old_certificate": old_cert_details, | |
| "comparison": comparison_result | |
| } | |
| # If only one certificate is provided, return just its details | |
| return cert_details | |
| # Launch Gradio UI | |
| gr.Interface( | |
| fn=gradio_process_certificate, | |
| inputs=[ | |
| gr.File(label="Certificate (PDF or Image)"), | |
| gr.Textbox(label="Old Certificate Details (JSON) - Optional") | |
| ], | |
| outputs=gr.JSON(label="Certificate Details"), | |
| title="π Certificate Details Extractor", | |
| description="Upload a certificate to extract details, or upload two certificates to compare them.", | |
| show_progress='full', | |
| allow_flagging="never" | |
| ).launch() |