Mihkelmj commited on
Commit
949ba27
·
1 Parent(s): 7052bfa

created a table overview of the data

Browse files
pages/admin.py CHANGED
@@ -4,6 +4,8 @@ import plotly.graph_objects as go
4
  import streamlit as st
5
  from sklearn.metrics import mean_squared_error
6
 
 
 
7
  USERNAME = "dragonkiller"
8
  PASSWORD = "donkey"
9
 
@@ -28,6 +30,35 @@ if not st.session_state.login_success:
28
  else:
29
  st.error("Invalid username or password.")
30
  else:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  # Actual data vs 1,2,3 days ahead predictions
32
  actual_data = pd.read_csv("pollution_data.csv")
33
  prediction_data = pd.read_csv("predictions_history.csv")
 
4
  import streamlit as st
5
  from sklearn.metrics import mean_squared_error
6
 
7
+ from src.data_api_calls import get_combined_data
8
+
9
  USERNAME = "dragonkiller"
10
  PASSWORD = "donkey"
11
 
 
30
  else:
31
  st.error("Invalid username or password.")
32
  else:
33
+ # Fetching the combined data
34
+ table_data = get_combined_data()
35
+
36
+ # Check for missing values
37
+ missing_values = table_data.isnull()
38
+
39
+ # Display the main data table
40
+ st.subheader("Data Table")
41
+
42
+ # Display message based on whether data is complete
43
+ if missing_values.values.any():
44
+ # Warning message if there are missing values
45
+ st.markdown("<h4 style='color: #E68B0A;'>Warning: Some data is missing!</h4>", unsafe_allow_html=True)
46
+
47
+ # Identify columns with missing values
48
+ missing_columns = table_data.columns[missing_values.any()].tolist()
49
+
50
+ # Identify rows (dates) with missing values
51
+ missing_rows = table_data[missing_values.any(axis=1)]['Date'].tolist()
52
+
53
+ # Display additional information about missing columns and rows
54
+ if missing_columns:
55
+ st.markdown(f"**Columns with missing data:** {', '.join(missing_columns)}")
56
+ if missing_rows:
57
+ st.markdown(f"**Rows with missing data (dates):** {', '.join(missing_rows)}")
58
+ else:
59
+ # Success message if no data is missing
60
+ st.markdown("<h4 style='color: #77C124;'>All data is complete!</h4>", unsafe_allow_html=True)
61
+ st.dataframe(table_data)
62
  # Actual data vs 1,2,3 days ahead predictions
63
  actual_data = pd.read_csv("pollution_data.csv")
64
  prediction_data = pd.read_csv("predictions_history.csv")
past_pollution_data.csv CHANGED
@@ -1,12 +1,16 @@
1
  date,NO2,O3
2
- 2023-10-18,10.842702702702699,39.81260000000001
3
  2023-10-19,17.97026666666666,31.779024390243908
4
  2023-10-20,17.233055555555563,18.7156
5
- 2023-10-21,15.023599999999993,22.04
6
  2023-10-22,8.723378378378372,48.33439999999999
7
  2023-10-23,20.634266666666676,15.586000000000002
8
- 2023-10-24,15.115599999999999,24.628085106382972
9
- 2023-10-25,22.885675675675678,27.117599999999992
10
  2023-10-26,21.531756756756756,13.3216
11
  2023-10-27,23.07226666666666,16.15416666666666
12
  2023-10-28,24.89121621621622,24.59040816326531
 
 
 
 
 
1
  date,NO2,O3
2
+ 2023-10-18,10.8427027027027,39.81260000000001
3
  2023-10-19,17.97026666666666,31.779024390243908
4
  2023-10-20,17.233055555555563,18.7156
5
+ 2023-10-21,15.023599999999991,22.04
6
  2023-10-22,8.723378378378372,48.33439999999999
7
  2023-10-23,20.634266666666676,15.586000000000002
8
+ 2023-10-24,15.1156,24.628085106382972
9
+ 2023-10-25,22.88567567567568,27.117599999999992
10
  2023-10-26,21.531756756756756,13.3216
11
  2023-10-27,23.07226666666666,16.15416666666666
12
  2023-10-28,24.89121621621622,24.59040816326531
13
+ 2023-10-29,9.724428571428572,51.5252
14
+ 2023-10-30,11.202054794520548,52.820600000000006
15
+ 2023-10-31,17.494666666666664,44.45854166666667
16
+ 2023-11-01,21.58809523809524,29.20631578947368
past_weather_data.csv CHANGED
@@ -10,4 +10,7 @@ date,temp,humidity,precip,windspeed,sealevelpressure,visibility,solarradiation
10
  2023-10-25,9.3,96.8,15.3,18.0,996.8,15.7,14.5
11
  2023-10-26,9.4,97.6,0.1,11.2,995.6,4.8,36.0
12
  2023-10-27,10.6,97.9,11.4,14.8,992.0,9.5,20.5
13
- 2023-10-28,11.4,88.6,3,18.4,994.4,29.3,48.5
 
 
 
 
10
  2023-10-25,9.3,96.8,15.3,18.0,996.8,15.7,14.5
11
  2023-10-26,9.4,97.6,0.1,11.2,995.6,4.8,36.0
12
  2023-10-27,10.6,97.9,11.4,14.8,992.0,9.5,20.5
13
+ 2023-10-28,11.4,88.6,3.0,18.4,994.4,29.3,48.5
14
+ 2023-10-29,13.0,82.2,9.5,31.7,991.5,38.8,35.4
15
+ 2023-10-30,11.2,90.4,13.0,18.4,997.5,28.8,27.0
16
+ 2023-10-31,11,93.7,18.6,18,1000.7,17.9,29.8
pollution_data.csv CHANGED
@@ -4,7 +4,10 @@ date,NO2,O3
4
  2024-10-19,23.91006441223834,23.1717142857143
5
  2024-10-20,22.57323754789273,23.53784452296821
6
  2024-10-21,21.1457004830918,24.02069565217393
7
- 2024-10-22,21.776579804560274,23.33588571428572
8
  2024-10-23,21.974793814433,22.21468879668051
9
  2024-10-24,25.51256756756757,20.91370967741937
10
  2024-10-25,21.72051282051282,22.33230769230769
 
 
 
 
4
  2024-10-19,23.91006441223834,23.1717142857143
5
  2024-10-20,22.57323754789273,23.53784452296821
6
  2024-10-21,21.1457004830918,24.02069565217393
7
+ 2024-10-22,21.77657980456027,23.33588571428572
8
  2024-10-23,21.974793814433,22.21468879668051
9
  2024-10-24,25.51256756756757,20.91370967741937
10
  2024-10-25,21.72051282051282,22.33230769230769
11
+ 2024-10-26,24.46423484380123,18.70331123489324
12
+ 2024-10-27,27.53722134983982,20.80809239842384
13
+ 2024-10-28,23.337567567567568,26.82861788617886
predictions_history.csv CHANGED
@@ -12,9 +12,9 @@ NO2,2024-10-16,2024-10-18,36.453956
12
  O3,2024-10-17,2024-10-18,16.08841798553393
13
  NO2,2024-10-17,2024-10-18,32.0458143607889
14
  O3,2024-10-16,2024-10-19,24.031357603260783
15
- NO2,2024-10-16,2024-10-19,20.083893955587914
16
  O3,2024-10-17,2024-10-19,21.031357603260783
17
- NO2,2024-10-17,2024-10-19,27.083893955587914
18
  O3,2024-10-17,2024-10-20,20.48486247979324
19
  NO2,2024-10-17,2024-10-20,23.84300578029378
20
  O3,2024-10-18,2024-10-19,22.304547122637445
@@ -54,8 +54,14 @@ NO2,2024-10-24,2024-10-26,25.760307451092384
54
  O3,2024-10-24,2024-10-27,19.64377495640328
55
  NO2,2024-10-24,2024-10-27,31.210576791105115
56
  O3,2024-10-25,2024-10-26,20.48055947200643
57
- NO2,2024-10-25,2024-10-26,23.957239039864238
58
  O3,2024-10-25,2024-10-27,11.088152958498888
59
  NO2,2024-10-25,2024-10-27,32.274494671100506
60
  O3,2024-10-25,2024-10-28,-0.7175631399505704
61
  NO2,2024-10-25,2024-10-28,40.86107800019054
 
 
 
 
 
 
 
12
  O3,2024-10-17,2024-10-18,16.08841798553393
13
  NO2,2024-10-17,2024-10-18,32.0458143607889
14
  O3,2024-10-16,2024-10-19,24.031357603260783
15
+ NO2,2024-10-16,2024-10-19,20.08389395558791
16
  O3,2024-10-17,2024-10-19,21.031357603260783
17
+ NO2,2024-10-17,2024-10-19,27.08389395558791
18
  O3,2024-10-17,2024-10-20,20.48486247979324
19
  NO2,2024-10-17,2024-10-20,23.84300578029378
20
  O3,2024-10-18,2024-10-19,22.304547122637445
 
54
  O3,2024-10-24,2024-10-27,19.64377495640328
55
  NO2,2024-10-24,2024-10-27,31.210576791105115
56
  O3,2024-10-25,2024-10-26,20.48055947200643
57
+ NO2,2024-10-25,2024-10-26,23.95723903986424
58
  O3,2024-10-25,2024-10-27,11.088152958498888
59
  NO2,2024-10-25,2024-10-27,32.274494671100506
60
  O3,2024-10-25,2024-10-28,-0.7175631399505704
61
  NO2,2024-10-25,2024-10-28,40.86107800019054
62
+ O3,2024-10-28,2024-10-29,22.13652238154496
63
+ NO2,2024-10-28,2024-10-29,31.608886931951144
64
+ O3,2024-10-28,2024-10-30,15.841669224
65
+ NO2,2024-10-28,2024-10-30,34.564284711452984
66
+ O3,2024-10-28,2024-10-31,22.35944571003375
67
+ NO2,2024-10-28,2024-10-31,34.37482132111927
weather_data.csv CHANGED
@@ -8,3 +8,6 @@ date,temp,humidity,precip,windspeed,sealevelpressure,visibility,solarradiation
8
  2024-10-23,11.2,97.3,0.0,13.0,1032.8,6.5,12.5
9
  2024-10-24,10.4,94.0,0.0,20.5,1024.7,13.0,62.5
10
  2024-10-25,13.6,92.2,0.5,11.9,1016.8,24.0,93.0
 
 
 
 
8
  2024-10-23,11.2,97.3,0.0,13.0,1032.8,6.5,12.5
9
  2024-10-24,10.4,94.0,0.0,20.5,1024.7,13.0,62.5
10
  2024-10-25,13.6,92.2,0.5,11.9,1016.8,24.0,93.0
11
+ 2024-10-26,13.7,91.5,0.0,11.9,1016.3,23.3,8.0
12
+ 2024-10-27,13.2,87.1,0.1,20.5,1019.4,10.4,28.6
13
+ 2024-10-28,12.4,91.8,1.1,31.7,1021.8,12.8,27.3