created a table overview of the data
Browse files- pages/admin.py +31 -0
- past_pollution_data.csv +8 -4
- past_weather_data.csv +4 -1
- pollution_data.csv +4 -1
- predictions_history.csv +9 -3
- weather_data.csv +3 -0
pages/admin.py
CHANGED
@@ -4,6 +4,8 @@ import plotly.graph_objects as go
|
|
4 |
import streamlit as st
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
|
|
|
|
|
7 |
USERNAME = "dragonkiller"
|
8 |
PASSWORD = "donkey"
|
9 |
|
@@ -28,6 +30,35 @@ if not st.session_state.login_success:
|
|
28 |
else:
|
29 |
st.error("Invalid username or password.")
|
30 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Actual data vs 1,2,3 days ahead predictions
|
32 |
actual_data = pd.read_csv("pollution_data.csv")
|
33 |
prediction_data = pd.read_csv("predictions_history.csv")
|
|
|
4 |
import streamlit as st
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
|
7 |
+
from src.data_api_calls import get_combined_data
|
8 |
+
|
9 |
USERNAME = "dragonkiller"
|
10 |
PASSWORD = "donkey"
|
11 |
|
|
|
30 |
else:
|
31 |
st.error("Invalid username or password.")
|
32 |
else:
|
33 |
+
# Fetching the combined data
|
34 |
+
table_data = get_combined_data()
|
35 |
+
|
36 |
+
# Check for missing values
|
37 |
+
missing_values = table_data.isnull()
|
38 |
+
|
39 |
+
# Display the main data table
|
40 |
+
st.subheader("Data Table")
|
41 |
+
|
42 |
+
# Display message based on whether data is complete
|
43 |
+
if missing_values.values.any():
|
44 |
+
# Warning message if there are missing values
|
45 |
+
st.markdown("<h4 style='color: #E68B0A;'>Warning: Some data is missing!</h4>", unsafe_allow_html=True)
|
46 |
+
|
47 |
+
# Identify columns with missing values
|
48 |
+
missing_columns = table_data.columns[missing_values.any()].tolist()
|
49 |
+
|
50 |
+
# Identify rows (dates) with missing values
|
51 |
+
missing_rows = table_data[missing_values.any(axis=1)]['Date'].tolist()
|
52 |
+
|
53 |
+
# Display additional information about missing columns and rows
|
54 |
+
if missing_columns:
|
55 |
+
st.markdown(f"**Columns with missing data:** {', '.join(missing_columns)}")
|
56 |
+
if missing_rows:
|
57 |
+
st.markdown(f"**Rows with missing data (dates):** {', '.join(missing_rows)}")
|
58 |
+
else:
|
59 |
+
# Success message if no data is missing
|
60 |
+
st.markdown("<h4 style='color: #77C124;'>All data is complete!</h4>", unsafe_allow_html=True)
|
61 |
+
st.dataframe(table_data)
|
62 |
# Actual data vs 1,2,3 days ahead predictions
|
63 |
actual_data = pd.read_csv("pollution_data.csv")
|
64 |
prediction_data = pd.read_csv("predictions_history.csv")
|
past_pollution_data.csv
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
date,NO2,O3
|
2 |
-
2023-10-18,10.
|
3 |
2023-10-19,17.97026666666666,31.779024390243908
|
4 |
2023-10-20,17.233055555555563,18.7156
|
5 |
-
2023-10-21,15.
|
6 |
2023-10-22,8.723378378378372,48.33439999999999
|
7 |
2023-10-23,20.634266666666676,15.586000000000002
|
8 |
-
2023-10-24,15.
|
9 |
-
2023-10-25,22.
|
10 |
2023-10-26,21.531756756756756,13.3216
|
11 |
2023-10-27,23.07226666666666,16.15416666666666
|
12 |
2023-10-28,24.89121621621622,24.59040816326531
|
|
|
|
|
|
|
|
|
|
1 |
date,NO2,O3
|
2 |
+
2023-10-18,10.8427027027027,39.81260000000001
|
3 |
2023-10-19,17.97026666666666,31.779024390243908
|
4 |
2023-10-20,17.233055555555563,18.7156
|
5 |
+
2023-10-21,15.023599999999991,22.04
|
6 |
2023-10-22,8.723378378378372,48.33439999999999
|
7 |
2023-10-23,20.634266666666676,15.586000000000002
|
8 |
+
2023-10-24,15.1156,24.628085106382972
|
9 |
+
2023-10-25,22.88567567567568,27.117599999999992
|
10 |
2023-10-26,21.531756756756756,13.3216
|
11 |
2023-10-27,23.07226666666666,16.15416666666666
|
12 |
2023-10-28,24.89121621621622,24.59040816326531
|
13 |
+
2023-10-29,9.724428571428572,51.5252
|
14 |
+
2023-10-30,11.202054794520548,52.820600000000006
|
15 |
+
2023-10-31,17.494666666666664,44.45854166666667
|
16 |
+
2023-11-01,21.58809523809524,29.20631578947368
|
past_weather_data.csv
CHANGED
@@ -10,4 +10,7 @@ date,temp,humidity,precip,windspeed,sealevelpressure,visibility,solarradiation
|
|
10 |
2023-10-25,9.3,96.8,15.3,18.0,996.8,15.7,14.5
|
11 |
2023-10-26,9.4,97.6,0.1,11.2,995.6,4.8,36.0
|
12 |
2023-10-27,10.6,97.9,11.4,14.8,992.0,9.5,20.5
|
13 |
-
2023-10-28,11.4,88.6,3,18.4,994.4,29.3,48.5
|
|
|
|
|
|
|
|
10 |
2023-10-25,9.3,96.8,15.3,18.0,996.8,15.7,14.5
|
11 |
2023-10-26,9.4,97.6,0.1,11.2,995.6,4.8,36.0
|
12 |
2023-10-27,10.6,97.9,11.4,14.8,992.0,9.5,20.5
|
13 |
+
2023-10-28,11.4,88.6,3.0,18.4,994.4,29.3,48.5
|
14 |
+
2023-10-29,13.0,82.2,9.5,31.7,991.5,38.8,35.4
|
15 |
+
2023-10-30,11.2,90.4,13.0,18.4,997.5,28.8,27.0
|
16 |
+
2023-10-31,11,93.7,18.6,18,1000.7,17.9,29.8
|
pollution_data.csv
CHANGED
@@ -4,7 +4,10 @@ date,NO2,O3
|
|
4 |
2024-10-19,23.91006441223834,23.1717142857143
|
5 |
2024-10-20,22.57323754789273,23.53784452296821
|
6 |
2024-10-21,21.1457004830918,24.02069565217393
|
7 |
-
2024-10-22,21.
|
8 |
2024-10-23,21.974793814433,22.21468879668051
|
9 |
2024-10-24,25.51256756756757,20.91370967741937
|
10 |
2024-10-25,21.72051282051282,22.33230769230769
|
|
|
|
|
|
|
|
4 |
2024-10-19,23.91006441223834,23.1717142857143
|
5 |
2024-10-20,22.57323754789273,23.53784452296821
|
6 |
2024-10-21,21.1457004830918,24.02069565217393
|
7 |
+
2024-10-22,21.77657980456027,23.33588571428572
|
8 |
2024-10-23,21.974793814433,22.21468879668051
|
9 |
2024-10-24,25.51256756756757,20.91370967741937
|
10 |
2024-10-25,21.72051282051282,22.33230769230769
|
11 |
+
2024-10-26,24.46423484380123,18.70331123489324
|
12 |
+
2024-10-27,27.53722134983982,20.80809239842384
|
13 |
+
2024-10-28,23.337567567567568,26.82861788617886
|
predictions_history.csv
CHANGED
@@ -12,9 +12,9 @@ NO2,2024-10-16,2024-10-18,36.453956
|
|
12 |
O3,2024-10-17,2024-10-18,16.08841798553393
|
13 |
NO2,2024-10-17,2024-10-18,32.0458143607889
|
14 |
O3,2024-10-16,2024-10-19,24.031357603260783
|
15 |
-
NO2,2024-10-16,2024-10-19,20.
|
16 |
O3,2024-10-17,2024-10-19,21.031357603260783
|
17 |
-
NO2,2024-10-17,2024-10-19,27.
|
18 |
O3,2024-10-17,2024-10-20,20.48486247979324
|
19 |
NO2,2024-10-17,2024-10-20,23.84300578029378
|
20 |
O3,2024-10-18,2024-10-19,22.304547122637445
|
@@ -54,8 +54,14 @@ NO2,2024-10-24,2024-10-26,25.760307451092384
|
|
54 |
O3,2024-10-24,2024-10-27,19.64377495640328
|
55 |
NO2,2024-10-24,2024-10-27,31.210576791105115
|
56 |
O3,2024-10-25,2024-10-26,20.48055947200643
|
57 |
-
NO2,2024-10-25,2024-10-26,23.
|
58 |
O3,2024-10-25,2024-10-27,11.088152958498888
|
59 |
NO2,2024-10-25,2024-10-27,32.274494671100506
|
60 |
O3,2024-10-25,2024-10-28,-0.7175631399505704
|
61 |
NO2,2024-10-25,2024-10-28,40.86107800019054
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
O3,2024-10-17,2024-10-18,16.08841798553393
|
13 |
NO2,2024-10-17,2024-10-18,32.0458143607889
|
14 |
O3,2024-10-16,2024-10-19,24.031357603260783
|
15 |
+
NO2,2024-10-16,2024-10-19,20.08389395558791
|
16 |
O3,2024-10-17,2024-10-19,21.031357603260783
|
17 |
+
NO2,2024-10-17,2024-10-19,27.08389395558791
|
18 |
O3,2024-10-17,2024-10-20,20.48486247979324
|
19 |
NO2,2024-10-17,2024-10-20,23.84300578029378
|
20 |
O3,2024-10-18,2024-10-19,22.304547122637445
|
|
|
54 |
O3,2024-10-24,2024-10-27,19.64377495640328
|
55 |
NO2,2024-10-24,2024-10-27,31.210576791105115
|
56 |
O3,2024-10-25,2024-10-26,20.48055947200643
|
57 |
+
NO2,2024-10-25,2024-10-26,23.95723903986424
|
58 |
O3,2024-10-25,2024-10-27,11.088152958498888
|
59 |
NO2,2024-10-25,2024-10-27,32.274494671100506
|
60 |
O3,2024-10-25,2024-10-28,-0.7175631399505704
|
61 |
NO2,2024-10-25,2024-10-28,40.86107800019054
|
62 |
+
O3,2024-10-28,2024-10-29,22.13652238154496
|
63 |
+
NO2,2024-10-28,2024-10-29,31.608886931951144
|
64 |
+
O3,2024-10-28,2024-10-30,15.841669224
|
65 |
+
NO2,2024-10-28,2024-10-30,34.564284711452984
|
66 |
+
O3,2024-10-28,2024-10-31,22.35944571003375
|
67 |
+
NO2,2024-10-28,2024-10-31,34.37482132111927
|
weather_data.csv
CHANGED
@@ -8,3 +8,6 @@ date,temp,humidity,precip,windspeed,sealevelpressure,visibility,solarradiation
|
|
8 |
2024-10-23,11.2,97.3,0.0,13.0,1032.8,6.5,12.5
|
9 |
2024-10-24,10.4,94.0,0.0,20.5,1024.7,13.0,62.5
|
10 |
2024-10-25,13.6,92.2,0.5,11.9,1016.8,24.0,93.0
|
|
|
|
|
|
|
|
8 |
2024-10-23,11.2,97.3,0.0,13.0,1032.8,6.5,12.5
|
9 |
2024-10-24,10.4,94.0,0.0,20.5,1024.7,13.0,62.5
|
10 |
2024-10-25,13.6,92.2,0.5,11.9,1016.8,24.0,93.0
|
11 |
+
2024-10-26,13.7,91.5,0.0,11.9,1016.3,23.3,8.0
|
12 |
+
2024-10-27,13.2,87.1,0.1,20.5,1019.4,10.4,28.6
|
13 |
+
2024-10-28,12.4,91.8,1.1,31.7,1021.8,12.8,27.3
|