Commit
·
6bd7feb
1
Parent(s):
c8357d0
changed password and username
Browse files- pages/admin.py +19 -12
pages/admin.py
CHANGED
@@ -3,11 +3,10 @@ import pandas as pd
|
|
3 |
import plotly.graph_objects as go
|
4 |
import streamlit as st
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
-
|
7 |
from src.data_api_calls import get_combined_data
|
8 |
|
9 |
-
USERNAME = "
|
10 |
-
PASSWORD = "
|
11 |
|
12 |
st.title("Admin Panel")
|
13 |
|
@@ -41,23 +40,31 @@ else:
|
|
41 |
|
42 |
# Display message based on whether data is complete
|
43 |
if missing_values.values.any():
|
44 |
-
|
45 |
-
st.markdown(
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
missing_columns = table_data.columns[missing_values.any()].tolist()
|
49 |
|
50 |
-
|
51 |
-
missing_rows = table_data[missing_values.any(axis=1)][
|
52 |
|
53 |
-
|
54 |
if missing_columns:
|
55 |
st.markdown(f"**Columns with missing data:** {', '.join(missing_columns)}")
|
56 |
if missing_rows:
|
57 |
-
st.markdown(
|
|
|
|
|
58 |
else:
|
59 |
-
|
60 |
-
st.markdown(
|
|
|
|
|
|
|
61 |
st.dataframe(table_data)
|
62 |
# Actual data vs 1,2,3 days ahead predictions
|
63 |
actual_data = pd.read_csv("pollution_data.csv")
|
|
|
3 |
import plotly.graph_objects as go
|
4 |
import streamlit as st
|
5 |
from sklearn.metrics import mean_squared_error
|
|
|
6 |
from src.data_api_calls import get_combined_data
|
7 |
|
8 |
+
USERNAME = "admin"
|
9 |
+
PASSWORD = "password"
|
10 |
|
11 |
st.title("Admin Panel")
|
12 |
|
|
|
40 |
|
41 |
# Display message based on whether data is complete
|
42 |
if missing_values.values.any():
|
43 |
+
# Warning message if there are missing values
|
44 |
+
st.markdown(
|
45 |
+
"<h4 style='color: #E68B0A;'>Warning: Some data is missing!</h4>",
|
46 |
+
unsafe_allow_html=True,
|
47 |
+
)
|
48 |
|
49 |
+
# Identify columns with missing values
|
50 |
missing_columns = table_data.columns[missing_values.any()].tolist()
|
51 |
|
52 |
+
# Identify rows (dates) with missing values
|
53 |
+
missing_rows = table_data[missing_values.any(axis=1)]["Date"].tolist()
|
54 |
|
55 |
+
# Display additional information about missing columns and rows
|
56 |
if missing_columns:
|
57 |
st.markdown(f"**Columns with missing data:** {', '.join(missing_columns)}")
|
58 |
if missing_rows:
|
59 |
+
st.markdown(
|
60 |
+
f"**Rows with missing data (dates):** {', '.join(missing_rows)}"
|
61 |
+
)
|
62 |
else:
|
63 |
+
# Success message if no data is missing
|
64 |
+
st.markdown(
|
65 |
+
"<h4 style='color: #77C124;'>All data is complete!</h4>",
|
66 |
+
unsafe_allow_html=True,
|
67 |
+
)
|
68 |
st.dataframe(table_data)
|
69 |
# Actual data vs 1,2,3 days ahead predictions
|
70 |
actual_data = pd.read_csv("pollution_data.csv")
|