elisaklunder
commited on
Commit
•
5c6dd58
1
Parent(s):
ca76ce0
my last straw
Browse files- .gitignore +4 -0
- README.md +0 -1
- app.py +50 -41
- requirements.txt +2 -1
- scalers/target_scaler_NO2.joblib +3 -0
- scalers/target_scaler_O3.joblib +3 -0
- daily_api__pollution.py → src/daily_api__pollution.py +0 -0
- data_loading.py → src/data_loading.py +0 -0
- helper_functions.py → src/helper_functions.py +0 -18
- src/models_loading.py +37 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv/
|
2 |
+
.env
|
3 |
+
__pycache__/
|
4 |
+
*.pyc
|
README.md
CHANGED
@@ -11,4 +11,3 @@ short_description: 'Demo: Model to predict O3 and NO2 concentrations in Utrecht'
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
-
hhhrhehheehehehe
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
app.py
CHANGED
@@ -1,31 +1,28 @@
|
|
1 |
-
import time
|
2 |
import altair as alt
|
3 |
-
import joblib
|
4 |
-
import numpy as np
|
5 |
import pandas as pd
|
6 |
-
import streamlit as st
|
7 |
-
from sklearn.linear_model import LinearRegression
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
import plotly.graph_objects as go
|
10 |
-
|
|
|
|
|
11 |
|
12 |
st.set_page_config(
|
13 |
page_title="Utrecht Pollution Dashboard",
|
14 |
page_icon="🏂��🌱",
|
15 |
layout="wide",
|
16 |
-
initial_sidebar_state="expanded"
|
|
|
17 |
|
18 |
alt.themes.enable("dark")
|
19 |
|
20 |
-
|
21 |
|
22 |
# App Title
|
23 |
-
st.title("Utrecht Pollution Dashboard
|
24 |
|
25 |
-
col1, col2 = st.columns((1,1))
|
26 |
# Create a 3-column layout
|
27 |
with col1:
|
28 |
-
st.subheader(
|
29 |
col1, col2, col3 = st.columns(3)
|
30 |
|
31 |
# First column
|
@@ -43,10 +40,10 @@ with col1:
|
|
43 |
custom_metric_box(label="Solar Radiation", value="200 W/m²", delta="-20 W/m²")
|
44 |
custom_metric_box(label="Wind Speed", value="15 km/h", delta="-2 km/h")
|
45 |
|
46 |
-
st.subheader(
|
47 |
-
col1, col2 = st.columns((1,1))
|
48 |
# Display the prediction
|
49 |
-
#st.write(f'Predicted Pollution Level: {prediction[0]:.2f}')
|
50 |
with col1:
|
51 |
pollution_box(label="O<sub>3</sub>", value="37 µg/m³", delta="+2 µg/m³")
|
52 |
with col2:
|
@@ -54,7 +51,9 @@ with col1:
|
|
54 |
|
55 |
# Sample data (replace with your actual data)
|
56 |
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=7).to_list()
|
57 |
-
dates_future = pd.date_range(
|
|
|
|
|
58 |
|
59 |
# O3 and NO2 values for the past 7 days
|
60 |
o3_past_values = [30, 32, 34, 33, 31, 35, 36]
|
@@ -70,61 +69,71 @@ o3_values = o3_past_values + o3_future_values
|
|
70 |
no2_values = no2_past_values + no2_future_values
|
71 |
|
72 |
# Create a DataFrame
|
73 |
-
df = pd.DataFrame({
|
74 |
-
'Date': dates,
|
75 |
-
'O3': o3_values,
|
76 |
-
'NO2': no2_values
|
77 |
-
})
|
78 |
|
79 |
-
st.subheader(
|
80 |
# Create two columns for two separate graphs
|
81 |
subcol1, subcol2 = st.columns(2)
|
82 |
# Plot O3 in the first subcolumn
|
83 |
with subcol1:
|
84 |
fig_o3 = go.Figure()
|
85 |
-
fig_o3.add_trace(
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
# Add a vertical line for predictions (today's date)
|
90 |
fig_o3.add_shape(
|
91 |
dict(
|
92 |
type="line",
|
93 |
-
x0=pd.Timestamp.today(),
|
94 |
-
|
|
|
|
|
95 |
line=dict(color="White", width=3, dash="dash"),
|
96 |
)
|
97 |
)
|
98 |
fig_o3.update_layout(
|
99 |
-
plot_bgcolor=
|
100 |
-
paper_bgcolor=
|
101 |
yaxis_title="O3 Concentration (µg/m³)",
|
102 |
font=dict(size=14),
|
103 |
-
hovermode="x unified"
|
104 |
)
|
105 |
st.plotly_chart(fig_o3)
|
106 |
|
107 |
# Plot NO2 in the second subcolumn
|
108 |
with subcol2:
|
109 |
fig_no2 = go.Figure()
|
110 |
-
fig_no2.add_trace(
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
# Add a vertical line for predictions (today's date)
|
115 |
fig_no2.add_shape(
|
116 |
dict(
|
117 |
type="line",
|
118 |
-
x0=pd.Timestamp.today(),
|
119 |
-
|
|
|
|
|
120 |
line=dict(color="White", width=3, dash="dash"),
|
121 |
)
|
122 |
)
|
123 |
fig_no2.update_layout(
|
124 |
-
plot_bgcolor=
|
125 |
-
paper_bgcolor=
|
126 |
yaxis_title="NO2 Concentration (µg/m³)",
|
127 |
font=dict(size=14),
|
128 |
-
hovermode="x unified"
|
129 |
)
|
130 |
-
st.plotly_chart(fig_no2)
|
|
|
|
|
1 |
import altair as alt
|
|
|
|
|
2 |
import pandas as pd
|
|
|
|
|
|
|
3 |
import plotly.graph_objects as go
|
4 |
+
import streamlit as st
|
5 |
+
from src.helper_functions import custom_metric_box, pollution_box
|
6 |
+
from src.models_loading import run_model
|
7 |
|
8 |
st.set_page_config(
|
9 |
page_title="Utrecht Pollution Dashboard",
|
10 |
page_icon="🏂��🌱",
|
11 |
layout="wide",
|
12 |
+
initial_sidebar_state="expanded",
|
13 |
+
)
|
14 |
|
15 |
alt.themes.enable("dark")
|
16 |
|
17 |
+
test_predictions = run_model("O3")
|
18 |
|
19 |
# App Title
|
20 |
+
st.title("Utrecht Pollution Dashboard🌱")
|
21 |
|
22 |
+
col1, col2 = st.columns((1, 1))
|
23 |
# Create a 3-column layout
|
24 |
with col1:
|
25 |
+
st.subheader("Current Weather")
|
26 |
col1, col2, col3 = st.columns(3)
|
27 |
|
28 |
# First column
|
|
|
40 |
custom_metric_box(label="Solar Radiation", value="200 W/m²", delta="-20 W/m²")
|
41 |
custom_metric_box(label="Wind Speed", value="15 km/h", delta="-2 km/h")
|
42 |
|
43 |
+
st.subheader("Current Pollution Levels")
|
44 |
+
col1, col2 = st.columns((1, 1))
|
45 |
# Display the prediction
|
46 |
+
# st.write(f'Predicted Pollution Level: {prediction[0]:.2f}')
|
47 |
with col1:
|
48 |
pollution_box(label="O<sub>3</sub>", value="37 µg/m³", delta="+2 µg/m³")
|
49 |
with col2:
|
|
|
51 |
|
52 |
# Sample data (replace with your actual data)
|
53 |
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=7).to_list()
|
54 |
+
dates_future = pd.date_range(
|
55 |
+
start=pd.Timestamp.today() + pd.Timedelta(days=1), periods=3
|
56 |
+
).to_list()
|
57 |
|
58 |
# O3 and NO2 values for the past 7 days
|
59 |
o3_past_values = [30, 32, 34, 33, 31, 35, 36]
|
|
|
69 |
no2_values = no2_past_values + no2_future_values
|
70 |
|
71 |
# Create a DataFrame
|
72 |
+
df = pd.DataFrame({"Date": dates, "O3": o3_values, "NO2": no2_values})
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
st.subheader("O3 and NO2 Prediction")
|
75 |
# Create two columns for two separate graphs
|
76 |
subcol1, subcol2 = st.columns(2)
|
77 |
# Plot O3 in the first subcolumn
|
78 |
with subcol1:
|
79 |
fig_o3 = go.Figure()
|
80 |
+
fig_o3.add_trace(
|
81 |
+
go.Scatter(
|
82 |
+
x=df["Date"],
|
83 |
+
y=df["O3"],
|
84 |
+
mode="lines+markers",
|
85 |
+
name="O3",
|
86 |
+
line=dict(color="rgb(0, 191, 255)", width=4),
|
87 |
+
)
|
88 |
+
) # Bright blue
|
89 |
# Add a vertical line for predictions (today's date)
|
90 |
fig_o3.add_shape(
|
91 |
dict(
|
92 |
type="line",
|
93 |
+
x0=pd.Timestamp.today(),
|
94 |
+
x1=pd.Timestamp.today(),
|
95 |
+
y0=min(o3_values),
|
96 |
+
y1=max(o3_values),
|
97 |
line=dict(color="White", width=3, dash="dash"),
|
98 |
)
|
99 |
)
|
100 |
fig_o3.update_layout(
|
101 |
+
plot_bgcolor="rgba(0, 0, 0, 0)", # Transparent background
|
102 |
+
paper_bgcolor="rgba(0, 0, 0, 0)", # Transparent paper background
|
103 |
yaxis_title="O3 Concentration (µg/m³)",
|
104 |
font=dict(size=14),
|
105 |
+
hovermode="x unified",
|
106 |
)
|
107 |
st.plotly_chart(fig_o3)
|
108 |
|
109 |
# Plot NO2 in the second subcolumn
|
110 |
with subcol2:
|
111 |
fig_no2 = go.Figure()
|
112 |
+
fig_no2.add_trace(
|
113 |
+
go.Scatter(
|
114 |
+
x=df["Date"],
|
115 |
+
y=df["NO2"],
|
116 |
+
mode="lines+markers",
|
117 |
+
name="NO2",
|
118 |
+
line=dict(color="rgb(255, 20, 147)", width=4),
|
119 |
+
)
|
120 |
+
) # Bright pink
|
121 |
# Add a vertical line for predictions (today's date)
|
122 |
fig_no2.add_shape(
|
123 |
dict(
|
124 |
type="line",
|
125 |
+
x0=pd.Timestamp.today(),
|
126 |
+
x1=pd.Timestamp.today(),
|
127 |
+
y0=min(no2_values),
|
128 |
+
y1=max(no2_values),
|
129 |
line=dict(color="White", width=3, dash="dash"),
|
130 |
)
|
131 |
)
|
132 |
fig_no2.update_layout(
|
133 |
+
plot_bgcolor="rgba(0, 0, 0, 0)", # Transparent background
|
134 |
+
paper_bgcolor="rgba(0, 0, 0, 0)", # Transparent paper background
|
135 |
yaxis_title="NO2 Concentration (µg/m³)",
|
136 |
font=dict(size=14),
|
137 |
+
hovermode="x unified",
|
138 |
)
|
139 |
+
st.plotly_chart(fig_no2)
|
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ joblib # or pickle if you're using that to load the model
|
|
5 |
scikit-learn # for mock model
|
6 |
altair
|
7 |
matplotlib
|
8 |
-
plotly
|
|
|
|
5 |
scikit-learn # for mock model
|
6 |
altair
|
7 |
matplotlib
|
8 |
+
plotly
|
9 |
+
huggingface-hub
|
scalers/target_scaler_NO2.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:255a0d1dd1d8673ce03e838e9fc1a7df4dab1248ca70f6cb73b66aea83ed6316
|
3 |
+
size 1023
|
scalers/target_scaler_O3.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ad485897b59228f1c1efd8c76cc2fa771d10efd379297f163ceba32dbacbab6
|
3 |
+
size 1023
|
daily_api__pollution.py → src/daily_api__pollution.py
RENAMED
File without changes
|
data_loading.py → src/data_loading.py
RENAMED
File without changes
|
helper_functions.py → src/helper_functions.py
RENAMED
@@ -1,22 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
import joblib
|
3 |
-
import pandas as pd
|
4 |
-
|
5 |
-
@st.cache_resource(ttl=6*300) # Reruns every 6 hours
|
6 |
-
def run_model():
|
7 |
-
# Load or train your model (pretrained model in this case)
|
8 |
-
model = joblib.load("linear_regression_model.pkl")
|
9 |
-
|
10 |
-
# Static input values
|
11 |
-
input_data = pd.DataFrame({
|
12 |
-
'Temperature': [20.0],
|
13 |
-
'Wind Speed': [10.0],
|
14 |
-
'Humidity': [50.0]
|
15 |
-
})
|
16 |
-
|
17 |
-
# Run the model with static input
|
18 |
-
prediction = model.predict(input_data)
|
19 |
-
return prediction
|
20 |
|
21 |
# Custom function to create styled metric boxes with subscripts, smaller label, and larger metric
|
22 |
def custom_metric_box(label, value, delta):
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Custom function to create styled metric boxes with subscripts, smaller label, and larger metric
|
4 |
def custom_metric_box(label, value, delta):
|
src/models_loading.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import joblib
|
4 |
+
import pandas as pd
|
5 |
+
import streamlit as st
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from huggingface_hub import hf_hub_download, login
|
8 |
+
|
9 |
+
|
10 |
+
def load_model(particle):
|
11 |
+
load_dotenv()
|
12 |
+
login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN"))
|
13 |
+
|
14 |
+
repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model"
|
15 |
+
if particle == "O3":
|
16 |
+
file_name = "O3_svr_model.pkl"
|
17 |
+
elif particle == "NO2":
|
18 |
+
file_name == "hehehe"
|
19 |
+
|
20 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
|
21 |
+
model = joblib.load(model_path)
|
22 |
+
|
23 |
+
return model
|
24 |
+
|
25 |
+
|
26 |
+
@st.cache_resource(ttl=6 * 300) # Reruns every 6 hours
|
27 |
+
def run_model(particle):
|
28 |
+
model = load_model(particle)
|
29 |
+
|
30 |
+
# Static input values
|
31 |
+
input_data = pd.DataFrame(
|
32 |
+
{"Temperature": [20.0], "Wind Speed": [10.0], "Humidity": [50.0]}
|
33 |
+
)
|
34 |
+
|
35 |
+
# Run the model with static input
|
36 |
+
prediction = model.predict(input_data)
|
37 |
+
return prediction
|