utrecht-pollution-prediction / data_api_calls.py
Mihkelmj's picture
connected real data to everything displayed; modified the layout a bit; added better graphs and expanders
647d992
raw
history blame
6.37 kB
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO
import pandas as pd
def pollution_data():
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
all_dataframes = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
days_today = 0
days_yesterday = 1
while(today != latest_date):
days_today += 1
days_yesterday += 1
for particle in particles:
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ''
headers = {}
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like='value')
all_dataframes.append(df)
combined_data = pd.concat(all_dataframes, ignore_index=True)
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
def delete_csv(csvs):
for csv in csvs:
if(os.path.exists(csv) and os.path.isfile(csv)):
os.remove(csv)
def clean_values():
particles = ["NO2", "O3"]
csvs = []
NO2 = []
O3 = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
days_today = 0
while(today != latest_date):
for particle in particles:
name = f'{particle}_{today}.csv'
csvs.append(name)
days_today += 1
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
for csv_file in csvs:
values = [] # Reset values for each CSV file
# Open the CSV file and read the values
with open(csv_file, 'r') as file:
reader = csv.reader(file)
for row in reader:
for value in row:
# Use regular expressions to extract numeric part
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
if cleaned_value: # If we successfully extract a number
values.append(float(cleaned_value[0])) # Convert the first match to float
# Compute the average if the values list is not empty
if values:
avg = sum(values) / len(values)
if "NO2" in csv_file:
NO2.append(avg)
else:
O3.append(avg)
delete_csv(csvs)
return NO2, O3
def add_columns():
file_path = 'weather_data.csv'
df = pd.read_csv(file_path)
df.insert(1, 'NO2', None)
df.insert(2, 'O3', None)
df.insert(10, 'weekday', None)
return df
def scale(data):
df = data
columns = list(df.columns)
columns.insert(3, columns.pop(6))
df = df[columns]
columns.insert(5, columns.pop(9))
df = df[columns]
columns.insert(9, columns.pop(6))
df = df[columns]
df = df.rename(columns={
'datetime':'date',
'windspeed': 'wind_speed',
'temp': 'mean_temp',
'solarradiation':'global_radiation',
'precip':'percipitation',
'sealevelpressure':'pressure',
'visibility':'minimum_visibility'
})
df['date'] = pd.to_datetime(df['date'])
df['weekday'] = df['date'].dt.day_name()
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
df['mean_temp'] = df['mean_temp'] * 10
df['minimum_visibility'] = df['minimum_visibility'] * 10
df['percipitation'] = df['percipitation'] * 10
df['pressure'] = df['pressure'] * 10
df['wind_speed'] = df['wind_speed'].astype(int)
df['mean_temp'] = df['mean_temp'].astype(int)
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
df['percipitation'] = df['percipitation'].astype(int)
df['pressure'] = df['pressure'].astype(int)
df['humidity'] = df['humidity'].astype(int)
df['global_radiation'] = df['global_radiation'].astype(int)
return df
def insert_pollution(NO2, O3, data):
df = data
start_index = 0
while NO2:
df.loc[start_index, 'NO2'] = NO2.pop()
start_index += 1
start_index = 0
while O3:
df.loc[start_index, 'O3'] = O3.pop()
start_index += 1
df.to_csv('dataset.csv', index=False)
def weather_data():
today = date.today().isoformat()
seven_days = (date.today() - timedelta(7)).isoformat()
try:
ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{seven_days}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
# Parse the results as CSV
CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
# Saving the CSV content to a file
current_dir = os.path.dirname(os.path.realpath(__file__))
file_path = os.path.join(current_dir, 'weather_data.csv')
with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerows(CSVText)
except urllib.error.HTTPError as e:
ErrorInfo= e.read().decode()
print('Error code: ', e.code, ErrorInfo)
sys.exit()
except urllib.error.URLError as e:
ErrorInfo= e.read().decode()
print('Error code: ', e.code,ErrorInfo)
sys.exit()
def get_data():
weather_data()
pollution_data()
NO2, O3 = clean_values()
df = add_columns()
scaled_df = scale(df)
insert_pollution(NO2, O3, scaled_df)
os.remove('weather_data.csv')