utrecht-pollution-prediction / data_api_calls.py
Mihkelmj's picture
recreating the feature creation function; need to get data from previous eyars
eeaf86d
raw
history blame
6.54 kB
import http.client
from datetime import date, timedelta
import pandas as pd
from io import StringIO
import os
import re
import csv
import urllib.request
import sys
import codecs
def pollution_data():
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
all_dataframes = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
days_today = 0
days_yesterday = 1
while(today != latest_date):
days_today += 1
days_yesterday += 1
for particle in particles:
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ''
headers = {}
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like='value')
all_dataframes.append(df)
combined_data = pd.concat(all_dataframes, ignore_index=True)
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
def delete_csv(csvs):
for csv in csvs:
if(os.path.exists(csv) and os.path.isfile(csv)):
os.remove(csv)
def clean_values():
particles = ["NO2", "O3"]
csvs = []
NO2 = []
O3 = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
days_today = 0
while(today != latest_date):
for particle in particles:
name = f'{particle}_{today}.csv'
csvs.append(name)
days_today += 1
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
for csv_file in csvs:
values = [] # Reset values for each CSV file
# Open the CSV file and read the values
with open(csv_file, 'r') as file:
reader = csv.reader(file)
for row in reader:
for value in row:
# Use regular expressions to extract numeric part
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
if cleaned_value: # If we successfully extract a number
values.append(float(cleaned_value[0])) # Convert the first match to float
# Compute the average if the values list is not empty
if values:
avg = sum(values) / len(values)
if "NO2" in csv_file:
NO2.append(avg)
else:
O3.append(avg)
delete_csv(csvs)
return NO2, O3
def add_columns():
file_path = 'weather_data.csv'
df = pd.read_csv(file_path)
df.insert(1, 'NO2', None)
df.insert(2, 'O3', None)
df.insert(10, 'weekday', None)
df.to_csv('combined_data.csv', index=False)
def scale():
file_path = 'combined_data.csv'
df = pd.read_csv(file_path)
columns = list(df.columns)
columns.insert(3, columns.pop(6))
df = df[columns]
columns.insert(5, columns.pop(9))
df = df[columns]
columns.insert(9, columns.pop(6))
df = df[columns]
df = df.rename(columns={
'datetime':'date',
'windspeed': 'wind_speed',
'temp': 'mean_temp',
'solarradiation':'global_radiation',
'precip':'percipitation',
'sealevelpressure':'pressure',
'visibility':'minimum_visibility'
})
df['date'] = pd.to_datetime(df['date'])
df['weekday'] = df['date'].dt.day_name()
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
df['mean_temp'] = df['mean_temp'] * 10
df['minimum_visibility'] = df['minimum_visibility'] * 10
df['percipitation'] = df['percipitation'] * 10
df['pressure'] = df['pressure'] * 10
df['wind_speed'] = df['wind_speed'].astype(int)
df['mean_temp'] = df['mean_temp'].astype(int)
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
df['percipitation'] = df['percipitation'].astype(int)
df['pressure'] = df['pressure'].astype(int)
df['humidity'] = df['humidity'].astype(int)
df['global_radiation'] = df['global_radiation'].astype(int)
df.to_csv('recorded_data.csv', index=False)
def insert_pollution(NO2, O3):
file_path = 'recorded_data.csv'
df = pd.read_csv(file_path)
start_index = 0
while NO2:
df.loc[start_index, 'NO2'] = NO2.pop()
start_index += 1
start_index = 0
while O3:
df.loc[start_index, 'O3'] = O3.pop()
start_index += 1
df.to_csv('dataset.csv', index=False)
def weather_data():
today = date.today().isoformat()
seven_days = (date.today() - timedelta(6)).isoformat()
try:
ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{seven_days}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
# Parse the results as CSV
CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
# Saving the CSV content to a file
current_dir = os.path.dirname(os.path.realpath(__file__))
file_path = os.path.join(current_dir, 'weather_data.csv')
with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerows(CSVText)
except urllib.error.HTTPError as e:
ErrorInfo= e.read().decode()
print('Error code: ', e.code, ErrorInfo)
sys.exit()
except urllib.error.URLError as e:
ErrorInfo= e.read().decode()
print('Error code: ', e.code,ErrorInfo)
sys.exit()
def get_data():
weather_data()
pollution_data()
NO2, O3 = clean_values()
add_columns()
scale()
insert_pollution(NO2, O3)
os.remove('combined_data.csv')
os.remove('weather_data.csv')