utrecht-pollution-prediction / src /past_data_api_calls.py
elisaklunder's picture
WORKINNGG
7052bfa
raw
history blame
7.23 kB
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO
import pandas as pd
PAST_WEATHER_DATA_FILE = "past_weather_data.csv"
PAST_POLLUTION_DATA_FILE = "past_pollution_data.csv"
def update_past_weather_data():
last_year_date = date.today() - timedelta(days=365)
if os.path.exists(PAST_WEATHER_DATA_FILE):
df = pd.read_csv(PAST_WEATHER_DATA_FILE)
start_date = pd.to_datetime(df["date"]).max().date().isoformat()
end_date = (last_year_date + timedelta(days=2)).isoformat()
else:
df = pd.DataFrame()
start_date = (last_year_date - timedelta(days=8)).isoformat()
end_date = (last_year_date + timedelta(days=2)).isoformat()
try:
ResultBytes = urllib.request.urlopen(
f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{end_date}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
)
CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))
data = pd.DataFrame(list(CSVText))
data.columns = data.iloc[0]
data = data[1:]
data = data.rename(columns={"datetime": "date"})
updated_df = pd.concat([df, data], ignore_index=True)
updated_df.drop_duplicates(subset="date", keep="last", inplace=True)
updated_df.to_csv(PAST_WEATHER_DATA_FILE, index=False)
except urllib.error.HTTPError as e:
ErrorInfo = e.read().decode()
print("Error code: ", e.code, ErrorInfo)
sys.exit()
except urllib.error.URLError as e:
ErrorInfo = e.read().decode()
print("Error code: ", e.code, ErrorInfo)
sys.exit()
def update_past_pollution_data():
O3 = []
NO2 = []
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
all_dataframes = []
last_year_date = date.today() - timedelta(days=365)
if os.path.exists(PAST_POLLUTION_DATA_FILE):
existing_data = pd.read_csv(PAST_POLLUTION_DATA_FILE)
last_date = pd.to_datetime(existing_data["date"]).max()
if last_date >= pd.to_datetime(last_year_date):
print("Data is already up to date.")
return
else:
start_date = last_date.date()
end_date = last_year_date + timedelta(days=3)
else:
existing_data = pd.DataFrame()
start_date = last_year_date - timedelta(days=7)
end_date = last_year_date + timedelta(days=3)
date_list = [
start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)
]
for current_date in date_list:
today = current_date.isoformat() + "T09:00:00Z"
yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z"
for particle in particles:
all_dataframes = [] # Reset for each particle
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ""
headers = {}
conn.request(
"GET",
f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
payload,
headers,
)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like="value")
all_dataframes.append(df)
combined_data = pd.concat(all_dataframes, ignore_index=True)
values = []
for row in combined_data:
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row)
if cleaned_value:
values.append(float(cleaned_value[0]))
if values:
avg = sum(values) / len(values)
if particle == "NO2":
NO2.append(avg)
else:
O3.append(avg)
new_data = pd.DataFrame(
{
"date": date_list,
"NO2": NO2,
"O3": O3,
}
)
updated_data = pd.concat([existing_data, new_data], ignore_index=True)
updated_data.drop_duplicates(subset="date", keep="last", inplace=True)
updated_data.to_csv(PAST_POLLUTION_DATA_FILE, index=False)
return NO2, O3
def get_past_combined_data():
update_past_weather_data()
update_past_pollution_data()
combined_df = pd.read_csv(PAST_WEATHER_DATA_FILE)
pollution_data = pd.read_csv(PAST_POLLUTION_DATA_FILE)
combined_df = combined_df.merge(pollution_data, on="date", how="inner")
combined_df = combined_df.tail(11)
# Apply scaling and renaming similar to the scale function from previous code
combined_df = combined_df.rename(
columns={
"date": "date",
"windspeed": "wind_speed",
"temp": "mean_temp",
"solarradiation": "global_radiation",
"precip": "percipitation",
"sealevelpressure": "pressure",
"visibility": "minimum_visibility",
}
)
combined_df["date"] = pd.to_datetime(combined_df["date"])
combined_df["weekday"] = combined_df["date"].dt.day_name()
combined_df["wind_speed"] = combined_df["wind_speed"].astype(float)
combined_df["mean_temp"] = combined_df["mean_temp"].astype(float)
combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(float)
combined_df["percipitation"] = combined_df["percipitation"].astype(float)
combined_df["pressure"] = combined_df["pressure"].astype(float).round()
combined_df["humidity"] = combined_df["humidity"].astype(float).round()
combined_df["global_radiation"] = combined_df["global_radiation"].astype(float)
combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10
combined_df["mean_temp"] = combined_df["mean_temp"] * 10
combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10
combined_df["percipitation"] = combined_df["percipitation"] * 10
combined_df["pressure"] = combined_df["pressure"] * 10
combined_df["wind_speed"] = (
combined_df["wind_speed"].astype(float).round().astype(int)
)
combined_df["mean_temp"] = (
combined_df["mean_temp"].astype(float).round().astype(int)
)
combined_df["minimum_visibility"] = (
combined_df["minimum_visibility"].astype(float).round().astype(int)
)
combined_df["percipitation"] = (
combined_df["percipitation"].astype(float).round().astype(int)
)
combined_df["pressure"] = combined_df["pressure"].astype(float).round().astype(int)
combined_df["humidity"] = combined_df["humidity"].astype(float).round().astype(int)
combined_df["global_radiation"] = (
combined_df["global_radiation"].astype(float).round().astype(int)
)
return combined_df