|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Mihakram/AraT5-base-question-generation") |
|
tokenizer = AutoTokenizer.from_pretrained("Mihakram/AraT5-base-question-generation") |
|
|
|
|
|
import gradio as gr |
|
def generate__questions(context,answer): |
|
text="context: " +context + " " + "answer: " + answer + " </s>" |
|
text_encoding = tokenizer.encode_plus( |
|
text,return_tensors="pt" |
|
) |
|
model.eval() |
|
generated_ids = model.generate( |
|
input_ids=text_encoding['input_ids'], |
|
attention_mask=text_encoding['attention_mask'], |
|
max_length=64, |
|
num_beams=5, |
|
num_return_sequences=1 |
|
) |
|
|
|
return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ') |
|
|
|
demo = gr.Interface(fn=generate__questions, inputs=[gr.Textbox(label='Context'), |
|
gr.Textbox(label='Answer')] , |
|
outputs=gr.Textbox(label='Question'), |
|
title="Arabic Question Generation", |
|
description="Get the Question from given Context and an Answer") |
|
demo.launch() |