|
import csv |
|
import gc |
|
import io |
|
import json |
|
import math |
|
import os |
|
import random |
|
from contextlib import contextmanager |
|
from threading import Thread |
|
|
|
import albumentations |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as transforms |
|
from decord import VideoReader |
|
from einops import rearrange |
|
from func_timeout import FunctionTimedOut, func_timeout |
|
from PIL import Image |
|
from torch.utils.data import BatchSampler, Sampler |
|
from torch.utils.data.dataset import Dataset |
|
|
|
VIDEO_READER_TIMEOUT = 20 |
|
|
|
def get_random_mask(shape): |
|
f, c, h, w = shape |
|
|
|
mask_index = np.random.randint(0, 4) |
|
mask = torch.zeros((f, 1, h, w), dtype=torch.uint8) |
|
if mask_index == 0: |
|
mask[1:, :, :, :] = 1 |
|
elif mask_index == 1: |
|
mask_frame_index = 1 |
|
mask[mask_frame_index:-mask_frame_index, :, :, :] = 1 |
|
elif mask_index == 2: |
|
center_x = torch.randint(0, w, (1,)).item() |
|
center_y = torch.randint(0, h, (1,)).item() |
|
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() |
|
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() |
|
|
|
start_x = max(center_x - block_size_x // 2, 0) |
|
end_x = min(center_x + block_size_x // 2, w) |
|
start_y = max(center_y - block_size_y // 2, 0) |
|
end_y = min(center_y + block_size_y // 2, h) |
|
mask[:, :, start_y:end_y, start_x:end_x] = 1 |
|
elif mask_index == 3: |
|
center_x = torch.randint(0, w, (1,)).item() |
|
center_y = torch.randint(0, h, (1,)).item() |
|
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() |
|
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() |
|
|
|
start_x = max(center_x - block_size_x // 2, 0) |
|
end_x = min(center_x + block_size_x // 2, w) |
|
start_y = max(center_y - block_size_y // 2, 0) |
|
end_y = min(center_y + block_size_y // 2, h) |
|
|
|
mask_frame_before = np.random.randint(0, f // 2) |
|
mask_frame_after = np.random.randint(f // 2, f) |
|
mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1 |
|
else: |
|
raise ValueError(f"The mask_index {mask_index} is not define") |
|
return mask |
|
|
|
|
|
@contextmanager |
|
def VideoReader_contextmanager(*args, **kwargs): |
|
vr = VideoReader(*args, **kwargs) |
|
try: |
|
yield vr |
|
finally: |
|
del vr |
|
gc.collect() |
|
|
|
|
|
def get_video_reader_batch(video_reader, batch_index): |
|
frames = video_reader.get_batch(batch_index).asnumpy() |
|
return frames |
|
|
|
|
|
class WebVid10M(Dataset): |
|
def __init__( |
|
self, |
|
csv_path, video_folder, |
|
sample_size=256, sample_stride=4, sample_n_frames=16, |
|
enable_bucket=False, enable_inpaint=False, is_image=False, |
|
): |
|
print(f"loading annotations from {csv_path} ...") |
|
with open(csv_path, 'r') as csvfile: |
|
self.dataset = list(csv.DictReader(csvfile)) |
|
self.length = len(self.dataset) |
|
print(f"data scale: {self.length}") |
|
|
|
self.video_folder = video_folder |
|
self.sample_stride = sample_stride |
|
self.sample_n_frames = sample_n_frames |
|
self.enable_bucket = enable_bucket |
|
self.enable_inpaint = enable_inpaint |
|
self.is_image = is_image |
|
|
|
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size) |
|
self.pixel_transforms = transforms.Compose([ |
|
transforms.Resize(sample_size[0]), |
|
transforms.CenterCrop(sample_size), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
]) |
|
|
|
def get_batch(self, idx): |
|
video_dict = self.dataset[idx] |
|
videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir'] |
|
|
|
video_dir = os.path.join(self.video_folder, f"{videoid}.mp4") |
|
video_reader = VideoReader(video_dir) |
|
video_length = len(video_reader) |
|
|
|
if not self.is_image: |
|
clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1) |
|
start_idx = random.randint(0, video_length - clip_length) |
|
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int) |
|
else: |
|
batch_index = [random.randint(0, video_length - 1)] |
|
|
|
if not self.enable_bucket: |
|
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous() |
|
pixel_values = pixel_values / 255. |
|
del video_reader |
|
else: |
|
pixel_values = video_reader.get_batch(batch_index).asnumpy() |
|
|
|
if self.is_image: |
|
pixel_values = pixel_values[0] |
|
return pixel_values, name |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __getitem__(self, idx): |
|
while True: |
|
try: |
|
pixel_values, name = self.get_batch(idx) |
|
break |
|
|
|
except Exception as e: |
|
print("Error info:", e) |
|
idx = random.randint(0, self.length-1) |
|
|
|
if not self.enable_bucket: |
|
pixel_values = self.pixel_transforms(pixel_values) |
|
if self.enable_inpaint: |
|
mask = get_random_mask(pixel_values.size()) |
|
mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask |
|
sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values, mask=mask, text=name) |
|
else: |
|
sample = dict(pixel_values=pixel_values, text=name) |
|
return sample |
|
|
|
|
|
class VideoDataset(Dataset): |
|
def __init__( |
|
self, |
|
json_path, video_folder=None, |
|
sample_size=256, sample_stride=4, sample_n_frames=16, |
|
enable_bucket=False, enable_inpaint=False |
|
): |
|
print(f"loading annotations from {json_path} ...") |
|
self.dataset = json.load(open(json_path, 'r')) |
|
self.length = len(self.dataset) |
|
print(f"data scale: {self.length}") |
|
|
|
self.video_folder = video_folder |
|
self.sample_stride = sample_stride |
|
self.sample_n_frames = sample_n_frames |
|
self.enable_bucket = enable_bucket |
|
self.enable_inpaint = enable_inpaint |
|
|
|
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size) |
|
self.pixel_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(sample_size[0]), |
|
transforms.CenterCrop(sample_size), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
] |
|
) |
|
|
|
def get_batch(self, idx): |
|
video_dict = self.dataset[idx] |
|
video_id, name = video_dict['file_path'], video_dict['text'] |
|
|
|
if self.video_folder is None: |
|
video_dir = video_id |
|
else: |
|
video_dir = os.path.join(self.video_folder, video_id) |
|
|
|
with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader: |
|
video_length = len(video_reader) |
|
|
|
clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1) |
|
start_idx = random.randint(0, video_length - clip_length) |
|
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int) |
|
|
|
try: |
|
sample_args = (video_reader, batch_index) |
|
pixel_values = func_timeout( |
|
VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args |
|
) |
|
except FunctionTimedOut: |
|
raise ValueError(f"Read {idx} timeout.") |
|
except Exception as e: |
|
raise ValueError(f"Failed to extract frames from video. Error is {e}.") |
|
|
|
if not self.enable_bucket: |
|
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() |
|
pixel_values = pixel_values / 255. |
|
del video_reader |
|
else: |
|
pixel_values = pixel_values |
|
|
|
return pixel_values, name |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __getitem__(self, idx): |
|
while True: |
|
try: |
|
pixel_values, name = self.get_batch(idx) |
|
break |
|
|
|
except Exception as e: |
|
print("Error info:", e) |
|
idx = random.randint(0, self.length-1) |
|
|
|
if not self.enable_bucket: |
|
pixel_values = self.pixel_transforms(pixel_values) |
|
if self.enable_inpaint: |
|
mask = get_random_mask(pixel_values.size()) |
|
mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask |
|
sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values, mask=mask, text=name) |
|
else: |
|
sample = dict(pixel_values=pixel_values, text=name) |
|
return sample |
|
|
|
|
|
if __name__ == "__main__": |
|
if 1: |
|
dataset = VideoDataset( |
|
json_path="/home/zhoumo.xjq/disk3/datasets/webvidval/results_2M_val.json", |
|
sample_size=256, |
|
sample_stride=4, sample_n_frames=16, |
|
) |
|
|
|
if 0: |
|
dataset = WebVid10M( |
|
csv_path="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv", |
|
video_folder="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val", |
|
sample_size=256, |
|
sample_stride=4, sample_n_frames=16, |
|
is_image=False, |
|
) |
|
|
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=0,) |
|
for idx, batch in enumerate(dataloader): |
|
print(batch["pixel_values"].shape, len(batch["text"])) |