|
import json |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from torch.utils.data.dataset import Dataset |
|
|
|
|
|
class CC15M(Dataset): |
|
def __init__( |
|
self, |
|
json_path, |
|
video_folder=None, |
|
resolution=512, |
|
enable_bucket=False, |
|
): |
|
print(f"loading annotations from {json_path} ...") |
|
self.dataset = json.load(open(json_path, 'r')) |
|
self.length = len(self.dataset) |
|
print(f"data scale: {self.length}") |
|
|
|
self.enable_bucket = enable_bucket |
|
self.video_folder = video_folder |
|
|
|
resolution = tuple(resolution) if not isinstance(resolution, int) else (resolution, resolution) |
|
self.pixel_transforms = transforms.Compose([ |
|
transforms.Resize(resolution[0]), |
|
transforms.CenterCrop(resolution), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
]) |
|
|
|
def get_batch(self, idx): |
|
video_dict = self.dataset[idx] |
|
video_id, name = video_dict['file_path'], video_dict['text'] |
|
|
|
if self.video_folder is None: |
|
video_dir = video_id |
|
else: |
|
video_dir = os.path.join(self.video_folder, video_id) |
|
|
|
pixel_values = Image.open(video_dir).convert("RGB") |
|
return pixel_values, name |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __getitem__(self, idx): |
|
while True: |
|
try: |
|
pixel_values, name = self.get_batch(idx) |
|
break |
|
except Exception as e: |
|
print(e) |
|
idx = random.randint(0, self.length-1) |
|
|
|
if not self.enable_bucket: |
|
pixel_values = self.pixel_transforms(pixel_values) |
|
else: |
|
pixel_values = np.array(pixel_values) |
|
|
|
sample = dict(pixel_values=pixel_values, text=name) |
|
return sample |
|
|
|
if __name__ == "__main__": |
|
dataset = CC15M( |
|
csv_path="/mnt_wg/zhoumo.xjq/CCUtils/cc15m_add_index.json", |
|
resolution=512, |
|
) |
|
|
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=0,) |
|
for idx, batch in enumerate(dataloader): |
|
print(batch["pixel_values"].shape, len(batch["text"])) |