Spaces:
Runtime error
Runtime error
| import io | |
| import gc | |
| import base64 | |
| import torch | |
| import gradio as gr | |
| import tempfile | |
| import hashlib | |
| import os | |
| from fastapi import FastAPI | |
| from io import BytesIO | |
| from PIL import Image | |
| # Function to encode a file to Base64 | |
| def encode_file_to_base64(file_path): | |
| with open(file_path, "rb") as file: | |
| # Encode the data to Base64 | |
| file_base64 = base64.b64encode(file.read()) | |
| return file_base64 | |
| def update_edition_api(_: gr.Blocks, app: FastAPI, controller): | |
| def _update_edition_api( | |
| datas: dict, | |
| ): | |
| edition = datas.get('edition', 'v2') | |
| try: | |
| controller.update_edition( | |
| edition | |
| ) | |
| comment = "Success" | |
| except Exception as e: | |
| torch.cuda.empty_cache() | |
| comment = f"Error. error information is {str(e)}" | |
| return {"message": comment} | |
| def update_diffusion_transformer_api(_: gr.Blocks, app: FastAPI, controller): | |
| def _update_diffusion_transformer_api( | |
| datas: dict, | |
| ): | |
| diffusion_transformer_path = datas.get('diffusion_transformer_path', 'none') | |
| try: | |
| controller.update_diffusion_transformer( | |
| diffusion_transformer_path | |
| ) | |
| comment = "Success" | |
| except Exception as e: | |
| torch.cuda.empty_cache() | |
| comment = f"Error. error information is {str(e)}" | |
| return {"message": comment} | |
| def save_base64_video(base64_string): | |
| video_data = base64.b64decode(base64_string) | |
| md5_hash = hashlib.md5(video_data).hexdigest() | |
| filename = f"{md5_hash}.mp4" | |
| temp_dir = tempfile.gettempdir() | |
| file_path = os.path.join(temp_dir, filename) | |
| with open(file_path, 'wb') as video_file: | |
| video_file.write(video_data) | |
| return file_path | |
| def save_base64_image(base64_string): | |
| video_data = base64.b64decode(base64_string) | |
| md5_hash = hashlib.md5(video_data).hexdigest() | |
| filename = f"{md5_hash}.jpg" | |
| temp_dir = tempfile.gettempdir() | |
| file_path = os.path.join(temp_dir, filename) | |
| with open(file_path, 'wb') as video_file: | |
| video_file.write(video_data) | |
| return file_path | |
| def infer_forward_api(_: gr.Blocks, app: FastAPI, controller): | |
| def _infer_forward_api( | |
| datas: dict, | |
| ): | |
| base_model_path = datas.get('base_model_path', 'none') | |
| lora_model_path = datas.get('lora_model_path', 'none') | |
| lora_alpha_slider = datas.get('lora_alpha_slider', 0.55) | |
| prompt_textbox = datas.get('prompt_textbox', None) | |
| negative_prompt_textbox = datas.get('negative_prompt_textbox', 'The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. ') | |
| sampler_dropdown = datas.get('sampler_dropdown', 'Euler') | |
| sample_step_slider = datas.get('sample_step_slider', 30) | |
| resize_method = datas.get('resize_method', "Generate by") | |
| width_slider = datas.get('width_slider', 672) | |
| height_slider = datas.get('height_slider', 384) | |
| base_resolution = datas.get('base_resolution', 512) | |
| is_image = datas.get('is_image', False) | |
| generation_method = datas.get('generation_method', False) | |
| length_slider = datas.get('length_slider', 239) | |
| overlap_video_length = datas.get('overlap_video_length', 4) | |
| partial_video_length = datas.get('partial_video_length', 72) | |
| cfg_scale_slider = datas.get('cfg_scale_slider', 6) | |
| start_image = datas.get('start_image', None) | |
| end_image = datas.get('end_image', None) | |
| validation_video = datas.get('validation_video', None) | |
| validation_video_mask = datas.get('validation_video_mask', None) | |
| control_video = datas.get('control_video', None) | |
| denoise_strength = datas.get('denoise_strength', 0.70) | |
| seed_textbox = datas.get("seed_textbox", 43) | |
| generation_method = "Image Generation" if is_image else generation_method | |
| if start_image is not None: | |
| start_image = base64.b64decode(start_image) | |
| start_image = [Image.open(BytesIO(start_image))] | |
| if end_image is not None: | |
| end_image = base64.b64decode(end_image) | |
| end_image = [Image.open(BytesIO(end_image))] | |
| if validation_video is not None: | |
| validation_video = save_base64_video(validation_video) | |
| if validation_video_mask is not None: | |
| validation_video_mask = save_base64_image(validation_video_mask) | |
| if control_video is not None: | |
| control_video = save_base64_video(control_video) | |
| try: | |
| save_sample_path, comment = controller.generate( | |
| "", | |
| base_model_path, | |
| lora_model_path, | |
| lora_alpha_slider, | |
| prompt_textbox, | |
| negative_prompt_textbox, | |
| sampler_dropdown, | |
| sample_step_slider, | |
| resize_method, | |
| width_slider, | |
| height_slider, | |
| base_resolution, | |
| generation_method, | |
| length_slider, | |
| overlap_video_length, | |
| partial_video_length, | |
| cfg_scale_slider, | |
| start_image, | |
| end_image, | |
| validation_video, | |
| validation_video_mask, | |
| control_video, | |
| denoise_strength, | |
| seed_textbox, | |
| is_api = True, | |
| ) | |
| except Exception as e: | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| save_sample_path = "" | |
| comment = f"Error. error information is {str(e)}" | |
| return {"message": comment} | |
| if save_sample_path != "": | |
| return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)} | |
| else: | |
| return {"message": comment, "save_sample_path": save_sample_path} |