VideoChatGPT / app.py
ynhe's picture
Rename demo.py to app.py
d6602e7
raw
history blame
9.33 kB
import torch
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes
from conversation import Chat
# videochat
from utils.config import Config
from utils.easydict import EasyDict
from models.videochat import VideoChat
# ========================================
# Model Initialization
# ========================================
def init_model():
print('Initializing VideoChat')
config_file = "configs/config.json"
cfg = Config.from_file(config_file)
model = VideoChat(config=cfg.model)
model = model.to(torch.device(cfg.device))
model = model.eval()
chat = Chat(model)
print('Initialization Finished')
return chat
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, gr_video, chat_state, num_segments):
# print(gr_img, gr_video)
chat_state = EasyDict({
"system": "",
"roles": ("Human", "Assistant"),
"messages": [],
"sep": "###"
})
img_list = []
if gr_img is None and gr_video is None:
return None, None, gr.update(interactive=True), chat_state, None
if gr_video:
llm_message, img_list, chat_state = chat.upload_video(gr_video, chat_state, img_list, num_segments)
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
if gr_img:
llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
#print(chat_state)
chat_state = chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(gr_img, gr_video,chatbot, chat_state, img_list, num_beams, temperature):
llm_message,llm_message_token, chat_state = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=1000, num_beams=num_beams, temperature=temperature)
llm_message = llm_message.replace("<s>", "") # handle <s>
chatbot[-1][1] = llm_message
print(f"========{gr_img}##<BOS>##{gr_video}========")
print(chat_state,flush=True)
print(f"========{gr_img}##<END>##{gr_video}========")
# print(f"Answer: {llm_message}")
return chatbot, chat_state, img_list
class OpenGVLab(gr.themes.base.Base):
def __init__(
self,
*,
primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
font=(
fonts.GoogleFont("Noto Sans"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="*neutral_50",
)
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
)
title = """<h1 align="center"><a href="https://github.com/OpenGVLab/Ask-Anything"><img src="https://i.328888.xyz/2023/05/11/iqrAkZ.md.png" alt="Ask-Anything" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
description ="""
<p> VideoChat, an end-to-end chat-centric video understanding system powered by <a href='https://github.com/OpenGVLab/InternVideo'>InternVideo</a>. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference.</p>
<div style='display:flex; gap: 0.25rem; '>
<a src="https://img.shields.io/badge/Github-Code-blue?logo=github" href="https://github.com/OpenGVLab/Ask-Anything"> <img src="https://img.shields.io/badge/Github-Code-blue?logo=github">
<a src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red" href="https://arxiv.org/abs/2305.06355"> <img src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red">
<a src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat" href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/wechat_group.jpg"> <img src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat">
<a src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord" href="https://discord.gg/A2Ex6Pph6A"> <img src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord"> </div>
"""
with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5, visible=True) as video_upload:
with gr.Column(elem_id="image") as img_part:
with gr.Tab("Video", elem_id='video_tab'):
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")#.style(height=320)
with gr.Tab("Image", elem_id='image_tab'):
up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload")#.style(height=320)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
num_segments = gr.Slider(
minimum=8,
maximum=64,
value=8,
step=1,
interactive=True,
label="Video Segments",
)
with gr.Column(visible=True) as input_raws:
chat_state = gr.State(EasyDict({
"system": "",
"roles": ("Human", "Assistant"),
"messages": [],
"sep": "###"
}))
img_list = gr.State()
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
with gr.Row():
with gr.Column(scale=0.7):
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False).style(container=False)
with gr.Column(scale=0.15, min_width=0):
run = gr.Button("💭Send")
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("🔄Clear️")
chat = init_model()
upload_button.click(upload_img, [up_image, up_video, chat_state, num_segments], [up_image, up_video, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [up_image, up_video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [up_image, up_video,chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
run.click(lambda: "", None, text_input)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, up_image, up_video, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch(server_name="0.0.0.0", favicon_path='bot_avatar.jpg', enable_queue=True,ssl_keyfile="vchat_cert/privkey1.pem",ssl_certfile="vchat_cert/cert1.pem",ssl_verify=False)