Create placeholder_python_code.py
Browse files- placeholder_python_code.py +57 -0
placeholder_python_code.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
pi_1 = """
|
| 3 |
+
import time
|
| 4 |
+
def calculate(iterations, p1, p2):
|
| 5 |
+
result = 1.0
|
| 6 |
+
for i in range(1, iterations+1):
|
| 7 |
+
j = i * p1 - p2
|
| 8 |
+
result -= (1/j)
|
| 9 |
+
j = i * p1 + p2
|
| 10 |
+
result += (1/j)
|
| 11 |
+
return result
|
| 12 |
+
### USE Or MODIFY THIS CODE BELOW IF YOU NEED CODE EXECUTION CHECK -- EXAMPLE BELOW:
|
| 13 |
+
start_time = time.time()
|
| 14 |
+
final_result = calculate(100_000_000, 4, 1) * 4
|
| 15 |
+
end_time = time.time()
|
| 16 |
+
print(f"Result: {final_result:.12f}")
|
| 17 |
+
print(f"Execution Time: {(end_time - start_time):.6f} seconds")
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
pi_2 = """
|
| 21 |
+
import time
|
| 22 |
+
def lcg(seed, a=1664525, c=1013904223, m=2**32):
|
| 23 |
+
value = seed
|
| 24 |
+
while True:
|
| 25 |
+
value = (a * value + c) % m
|
| 26 |
+
yield value
|
| 27 |
+
def max_subarray_sum(n, seed, min_val, max_val):
|
| 28 |
+
'''Generate n pseudo-random numbers using LCG and find max subarray sum.'''
|
| 29 |
+
lcg_gen = lcg(seed)
|
| 30 |
+
random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]
|
| 31 |
+
# Kadane’s Algorithm
|
| 32 |
+
max_sum = float('-inf')
|
| 33 |
+
current_sum = 0
|
| 34 |
+
for x in random_numbers:
|
| 35 |
+
current_sum = max(x, current_sum + x)
|
| 36 |
+
max_sum = max(max_sum, current_sum)
|
| 37 |
+
return max_sum, random_numbers
|
| 38 |
+
def total_max_subarray_sum(n, initial_seed, min_val, max_val):
|
| 39 |
+
total_sum = 0
|
| 40 |
+
lcg_gen = lcg(initial_seed)
|
| 41 |
+
for _ in range(20):
|
| 42 |
+
seed = next(lcg_gen)
|
| 43 |
+
max_sum, _ = max_subarray_sum(n, seed, min_val, max_val) # unpack tuple
|
| 44 |
+
total_sum += max_sum
|
| 45 |
+
return total_sum
|
| 46 |
+
# Parameters
|
| 47 |
+
n = 10000
|
| 48 |
+
initial_seed = 42
|
| 49 |
+
min_val = -10
|
| 50 |
+
max_val = 10
|
| 51 |
+
# Timing
|
| 52 |
+
start_time = time.time()
|
| 53 |
+
result = total_max_subarray_sum(n, initial_seed, min_val, max_val)
|
| 54 |
+
end_time = time.time()
|
| 55 |
+
print("Total Maximum Subarray Sum (20 runs):", result)
|
| 56 |
+
print("Execution Time: {:.6f} seconds".format(end_time - start_time))
|
| 57 |
+
"""
|