Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,12 +5,21 @@ from fastapi.responses import JSONResponse, HTMLResponse
|
|
| 5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
#
|
|
|
|
| 9 |
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load processor + model
|
| 12 |
-
processor = AutoImageProcessor.from_pretrained(
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Create FastAPI app
|
| 16 |
app = FastAPI()
|
|
@@ -43,10 +52,10 @@ async def predict(file: UploadFile = File(...)):
|
|
| 43 |
outputs = model(**inputs)
|
| 44 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].cpu().numpy()
|
| 45 |
|
| 46 |
-
# Get labels
|
| 47 |
labels = list(model.config.id2label.values())
|
| 48 |
|
| 49 |
-
#
|
| 50 |
result = {
|
| 51 |
"female": float(probs[labels.index("female portrait")]),
|
| 52 |
"male": float(probs[labels.index("male portrait")])
|
|
|
|
| 5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
# ✅ Force cache to /tmp/hf_cache before anything else
|
| 9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 10 |
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
| 11 |
+
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_cache"
|
| 12 |
+
|
| 13 |
+
# Create cache directory if missing
|
| 14 |
+
os.makedirs("/tmp/hf_cache", exist_ok=True)
|
| 15 |
|
| 16 |
# Load processor + model
|
| 17 |
+
processor = AutoImageProcessor.from_pretrained(
|
| 18 |
+
"prithivMLmods/Realistic-Gender-Classification", cache_dir="/tmp/hf_cache"
|
| 19 |
+
)
|
| 20 |
+
model = AutoModelForImageClassification.from_pretrained(
|
| 21 |
+
"prithivMLmods/Realistic-Gender-Classification", cache_dir="/tmp/hf_cache"
|
| 22 |
+
)
|
| 23 |
|
| 24 |
# Create FastAPI app
|
| 25 |
app = FastAPI()
|
|
|
|
| 52 |
outputs = model(**inputs)
|
| 53 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].cpu().numpy()
|
| 54 |
|
| 55 |
+
# Get labels
|
| 56 |
labels = list(model.config.id2label.values())
|
| 57 |
|
| 58 |
+
# Clean result for FlutterFlow
|
| 59 |
result = {
|
| 60 |
"female": float(probs[labels.index("female portrait")]),
|
| 61 |
"male": float(probs[labels.index("male portrait")])
|