go2openaiapi / app.py
Miday's picture
Update app.py
6778e19 verified
import time
import base64
from openai import OpenAI
import gradio
import google.generativeai as genai
def generation(prompt_text):
a_key = "QUl6YVN5RGRJZXlsSnVUOERWMndlbXBfeE8wWUpmZEl4OFZ4S1FJ"
genai.configure(api_key=str(base64.b64decode(a_key), encoding="utf-8"))
generation_config = {"temperature": 0.9, "top_p": 1, "top_k": 1, "max_output_tokens": 2048}
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}]
model = genai.GenerativeModel(model_name="gemini-pro", generation_config=generation_config, safety_settings=safety_settings)
response = model.generate_content(prompt_text)
return response
chatgpt_model_type_normal = "gpt-3.5-turbo-instruct:普通对话型"
chatgpt_model_type_memory = "gpt-3.5-turbo-16k:记忆对话型"
chatgpt_model_type_gemini = "这是Google旗下原生多模态大模型 Gemini google-gemini-pro:普通对话型"
conversation_history = []
prompt_parts = [""]
def chatgpt(input_text, model_type, field):
a_key = "c2stRFo3ZzRadXlzOEhMd2RWZnFYVWJUM0JsYmtGSkFPTm9PNHdPMmJZTTc5Tm5DTVQ5"
client = OpenAI(api_key=str(base64.b64decode(a_key), encoding="utf-8"))
if field != "":
input_text = input_text + "\n" + "假设你扮演的人物角色或你专注的学术领域为:" + field
if model_type == chatgpt_model_type_normal:
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
temperature=0.25,
max_tokens=2500,
frequency_penalty=0.5,
presence_penalty=0.5,
top_p=0.88,
prompt=input_text
)
response_text = response.choices[0].text.strip()
if model_type == chatgpt_model_type_memory:
conversation_system = {"role": "system", "content": ""}
conversation_user = {"role": "user", "content": input_text}
if conversation_history == []:
conversation_history.append(conversation_system)
conversation_history.append(conversation_user)
else:
conversation_history.append(conversation_user)
response = client.chat.completions.create(
model="gpt-3.5-turbo-16k",
temperature=0.25,
max_tokens=5000,
frequency_penalty=0.5,
presence_penalty=0.5,
top_p=0.88,
messages=conversation_history,
)
response_text = response.choices[0].message.content
conversation_system = {"role": "system", "content": response_text}
conversation_history.append(conversation_system)
if model_type == chatgpt_model_type_gemini:
if prompt_parts[0] == "":
prompt_parts[0] += input_text
else:
prompt_parts[0] += (" " + input_text)
response_gemini = generation(prompt_parts)
response_text = response_gemini.text
prompt_parts[0] += (" " + response_text)
return response_text
dall_e_model_type_2 = "Dall-E-2:较快 | 较差"
dall_e_model_type_3 = "Dall-E-3:较慢 | 较好"
def dall_e(input_text, add_text, model_type):
a_key = "c2stRFo3ZzRadXlzOEhMd2RWZnFYVWJUM0JsYmtGSkFPTm9PNHdPMmJZTTc5Tm5DTVQ5"
client = OpenAI(api_key=str(base64.b64decode(a_key), encoding="utf-8"))
complete_text = input_text + "\n" + "增加图片风格的细节或场景的细节:" + add_text
if model_type == dall_e_model_type_2:
model_select = "dall-e-2"
if model_type == dall_e_model_type_3:
model_select = "dall-e-3"
response = client.images.generate(
model=model_select,
prompt=complete_text,
size="1024x1024",
quality="standard",
n=1,
)
image_url = response.data[0].url
return image_url
def whisper(audio_file):
a_key = "c2stRFo3ZzRadXlzOEhMd2RWZnFYVWJUM0JsYmtGSkFPTm9PNHdPMmJZTTc5Tm5DTVQ5"
client = OpenAI(api_key=str(base64.b64decode(a_key), encoding="utf-8"))
audio_file = open(audio_file, "rb")
transcript = client.audio.transcriptions.create(model="whisper-1", file=audio_file, response_format="text")
return transcript
tts_model_type_1 = "tts-1:较快 | 较差"
tts_model_type_1_hd = "tts-1-hd:较慢 | 较好"
tts_gender_male = "男生声音:Alloy"
tts_gender_female = "女生声音:Nova"
def tts(input_text, model_type, gender):
a_key = "c2stRFo3ZzRadXlzOEhMd2RWZnFYVWJUM0JsYmtGSkFPTm9PNHdPMmJZTTc5Tm5DTVQ5"
client = OpenAI(api_key=str(base64.b64decode(a_key), encoding="utf-8"))
timestamp = time.time()
speech_file_path = "tts_" + str(timestamp) + ".mp3"
if model_type == "tts-1:较快 | 较差":
model_select = "tts-1"
if model_type == "tts-1-hd:较慢 | 较好":
model_select = "tts-1-hd"
if gender == "男生声音:Alloy":
voice_select = "alloy"
if gender == "女生声音:Nova":
voice_select = "nova"
response = client.audio.speech.create(
model=model_select,
voice=voice_select,
input=input_text,
)
response.stream_to_file(speech_file_path)
return speech_file_path, whisper(speech_file_path)
def demo():
article_thanks = "<br> 🔅Thanks Python. &nbsp;&nbsp; 🔅Thanks OpenAI. &nbsp;&nbsp; 🔅Thanks Gradio. &nbsp;&nbsp; 🔅Thanks Myself. &nbsp;&nbsp; 🔅Thank you !"
chat_demo = gradio.Interface(fn=chatgpt,
inputs=[gradio.Textbox(label="💢(必须) ⚡你的对话", lines=3, placeholder="输入内容", show_copy_button=True),
gradio.Radio([chatgpt_model_type_normal, chatgpt_model_type_memory, chatgpt_model_type_gemini],
label="⚡选择GPT模型", value=chatgpt_model_type_normal),
gradio.Textbox(label="⚡人物角色 / 学术领域(选择 #记忆对话型 生效)", lines=1,
placeholder="例如:马斯克;人工智能")],
outputs=gradio.Textbox(label="⚡ GPT 对话生成", lines=11,
show_copy_button=True,
placeholder="ChatGPT - 是未成熟的AGI智能工具 - 无法保证回答正确 !仅供参考 😊"),
title="<br>MyDIY_Resume | Gradio:🤖 Chat-with-GPT3.5",
description="✅ 操作指南:在左边的文本框中输入内容,再选择对话的GPT模型类型,如果选择为角色型则可以为GPT设定一种角色或领域作为回答的方向 !😁",
article=article_thanks)
image_demo = gradio.Interface(fn=dall_e,
inputs=[gradio.Textbox(label="💢(必须) ⚡描述图片", lines=2, placeholder="输入内容", show_copy_button=True),
gradio.Textbox(label="⚡描述细节", lines=1, placeholder="例如:蔚蓝;科幻", show_copy_button=True),
gradio.Radio([dall_e_model_type_2, dall_e_model_type_3],
label="⚡选择Dall-E模型", value=dall_e_model_type_2)],
outputs=gradio.Image(label="⚡Dell-E 图片生成"),
title="<br>MyDIY_Resume | Gradio:🤖 Dall-E-Generate-Image",
description="✅ 操作指南:在左边的文本框中输入需要生成图片的内容,再选择生成图片的Dall-E模型,需要注意Dall-E-3模型的请求更容易受到限制 !😁",
article=article_thanks)
stt_demo = gradio.Interface(fn=whisper,
inputs=[gradio.Audio(label="💢(必须) ⚡上传音频文件", type="filepath")],
outputs=gradio.Textbox(label="⚡Whisper 文字生成", lines=10,
placeholder="Whisper-v1 - 是初代版本模型 - 无法保证转换正确 !仅供参考 😊",
show_copy_button=True),
title="<br>MyDIY_Resume | Gradio:🤖 Whisper-Speech-to-Text",
description="✅ 操作指南:点击左边的音频框进行本地音频文件选取,或者直接将音频文件拖拉到当前音频框,默认的音频转文本模型是Whisper-v1 !😁",
article=article_thanks)
tts_demo = gradio.Interface(fn=tts,
inputs=[gradio.Textbox(label="💢(必须) ⚡你的文本", lines=3, placeholder="输入内容", show_copy_button=True),
gradio.Radio([tts_model_type_1, tts_model_type_1_hd], label="选择TTS模型", value=tts_model_type_1),
gradio.Radio([tts_gender_male, tts_gender_female], label="选择声音性别", value=tts_gender_male)],
outputs=[gradio.Audio(label="⚡TTS 音频生成"),
gradio.Textbox(label="生成的音频再经过 Whisper 二次检验", lines=5,
placeholder="生成的音频再次经过 Whisper 转换用于验证TTS的准确性 !仅供参考 😊",
show_copy_button=True)],
title="<br>MyDIY_Resume | Gradio:🤖 TTS-Text-to-Speech",
description="✅ 操作指南:在左边的文本框中输入需要转音频的内容,再选择生成音频的TTS模型,两个模型实际差异不大,最后为模型选择输出男声还是女声 !😁",
article=article_thanks)
GUI = gradio.TabbedInterface([chat_demo, image_demo, stt_demo, tts_demo],
["1️⃣ Chat-with-GPT:对话学习", "2️⃣ Generate-Image:生成图片", "3️⃣ Speech-to-Text:语音转文本", "4️⃣ Text-to-Speech:文本转语音"],
css="footer {visibility: hidden}")
GUI.launch(debug=True, share=False)
if __name__ == "__main__":
demo()