Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ from PIL import Image, ImageDraw
|
|
7 |
import google.generativeai as genai
|
8 |
import traceback
|
9 |
|
10 |
-
def process_file(file, instructions, api_key):
|
11 |
try:
|
12 |
# Initialize Gemini
|
13 |
genai.configure(api_key=api_key)
|
@@ -24,9 +24,10 @@ def process_file(file, instructions, api_key):
|
|
24 |
Data columns: {list(df.columns)}
|
25 |
Data shape: {df.shape}
|
26 |
Instructions: {instructions}
|
|
|
27 |
|
28 |
-
Based on this, create 3 appropriate visualizations that provide meaningful insights. For each visualization:
|
29 |
-
1.
|
30 |
2. Determine appropriate data aggregation (e.g., top 5 categories, monthly averages)
|
31 |
3. Select relevant columns for x-axis, y-axis, and any additional dimensions (color, size)
|
32 |
4. Provide a clear, concise title that explains the insight
|
@@ -36,9 +37,9 @@ def process_file(file, instructions, api_key):
|
|
36 |
|
37 |
Return your response as a Python list of dictionaries:
|
38 |
[
|
39 |
-
{{"title": "...", "plot_type": "
|
40 |
-
{{"title": "...", "plot_type": "
|
41 |
-
{{"title": "...", "plot_type": "
|
42 |
]
|
43 |
""")
|
44 |
|
@@ -71,18 +72,18 @@ def process_file(file, instructions, api_key):
|
|
71 |
if 'top_n' in plot and plot['top_n']:
|
72 |
plot_df = plot_df.nlargest(plot['top_n'], plot['y'])
|
73 |
|
74 |
-
if
|
75 |
plot_df.plot(kind='bar', x=plot['x'], y=plot['y'], ax=ax)
|
76 |
-
elif
|
77 |
plot_df.plot(kind='line', x=plot['x'], y=plot['y'], ax=ax)
|
78 |
-
elif
|
79 |
plot_df.plot(kind='scatter', x=plot['x'], y=plot['y'], ax=ax,
|
80 |
c=plot['additional'].get('color'), s=plot_df[plot['additional'].get('size', 'y')])
|
81 |
-
elif
|
82 |
plot_df[plot['x']].hist(ax=ax, bins=20)
|
83 |
-
elif
|
84 |
plot_df.plot(kind='pie', y=plot['y'], labels=plot_df[plot['x']], ax=ax, autopct='%1.1f%%')
|
85 |
-
elif
|
86 |
pivot_df = plot_df.pivot(index=plot['x'], columns=plot['additional']['color'], values=plot['y'])
|
87 |
ax.imshow(pivot_df, cmap='YlOrRd')
|
88 |
ax.set_xticks(range(len(pivot_df.columns)))
|
@@ -91,7 +92,7 @@ def process_file(file, instructions, api_key):
|
|
91 |
ax.set_yticklabels(pivot_df.index)
|
92 |
|
93 |
ax.set_title(plot['title'])
|
94 |
-
if
|
95 |
ax.set_xlabel(plot['x'])
|
96 |
ax.set_ylabel(plot['y'])
|
97 |
plt.tight_layout()
|
@@ -121,13 +122,14 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
121 |
instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...")
|
122 |
|
123 |
api_key = gr.Textbox(label="Gemini API Key", type="password")
|
|
|
124 |
submit = gr.Button("Generate Insights", variant="primary")
|
125 |
|
126 |
output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)]
|
127 |
|
128 |
submit.click(
|
129 |
process_file,
|
130 |
-
inputs=[file, instructions, api_key],
|
131 |
outputs=output_images
|
132 |
)
|
133 |
|
|
|
7 |
import google.generativeai as genai
|
8 |
import traceback
|
9 |
|
10 |
+
def process_file(file, instructions, api_key, graph_type):
|
11 |
try:
|
12 |
# Initialize Gemini
|
13 |
genai.configure(api_key=api_key)
|
|
|
24 |
Data columns: {list(df.columns)}
|
25 |
Data shape: {df.shape}
|
26 |
Instructions: {instructions}
|
27 |
+
Graph Type: {graph_type}
|
28 |
|
29 |
+
Based on this, create 3 appropriate visualizations of the specified type that provide meaningful insights. For each visualization:
|
30 |
+
1. Use the specified plot type: {graph_type}
|
31 |
2. Determine appropriate data aggregation (e.g., top 5 categories, monthly averages)
|
32 |
3. Select relevant columns for x-axis, y-axis, and any additional dimensions (color, size)
|
33 |
4. Provide a clear, concise title that explains the insight
|
|
|
37 |
|
38 |
Return your response as a Python list of dictionaries:
|
39 |
[
|
40 |
+
{{"title": "...", "plot_type": "{graph_type}", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}},
|
41 |
+
{{"title": "...", "plot_type": "{graph_type}", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}},
|
42 |
+
{{"title": "...", "plot_type": "{graph_type}", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}}
|
43 |
]
|
44 |
""")
|
45 |
|
|
|
72 |
if 'top_n' in plot and plot['top_n']:
|
73 |
plot_df = plot_df.nlargest(plot['top_n'], plot['y'])
|
74 |
|
75 |
+
if graph_type == 'bar':
|
76 |
plot_df.plot(kind='bar', x=plot['x'], y=plot['y'], ax=ax)
|
77 |
+
elif graph_type == 'line':
|
78 |
plot_df.plot(kind='line', x=plot['x'], y=plot['y'], ax=ax)
|
79 |
+
elif graph_type == 'scatter':
|
80 |
plot_df.plot(kind='scatter', x=plot['x'], y=plot['y'], ax=ax,
|
81 |
c=plot['additional'].get('color'), s=plot_df[plot['additional'].get('size', 'y')])
|
82 |
+
elif graph_type == 'hist':
|
83 |
plot_df[plot['x']].hist(ax=ax, bins=20)
|
84 |
+
elif graph_type == 'pie':
|
85 |
plot_df.plot(kind='pie', y=plot['y'], labels=plot_df[plot['x']], ax=ax, autopct='%1.1f%%')
|
86 |
+
elif graph_type == 'heatmap':
|
87 |
pivot_df = plot_df.pivot(index=plot['x'], columns=plot['additional']['color'], values=plot['y'])
|
88 |
ax.imshow(pivot_df, cmap='YlOrRd')
|
89 |
ax.set_xticks(range(len(pivot_df.columns)))
|
|
|
92 |
ax.set_yticklabels(pivot_df.index)
|
93 |
|
94 |
ax.set_title(plot['title'])
|
95 |
+
if graph_type != 'pie':
|
96 |
ax.set_xlabel(plot['x'])
|
97 |
ax.set_ylabel(plot['y'])
|
98 |
plt.tight_layout()
|
|
|
122 |
instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...")
|
123 |
|
124 |
api_key = gr.Textbox(label="Gemini API Key", type="password")
|
125 |
+
graph_type = gr.Dropdown(choices=["bar", "line", "scatter", "hist", "pie", "heatmap"], label="Graph Type")
|
126 |
submit = gr.Button("Generate Insights", variant="primary")
|
127 |
|
128 |
output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)]
|
129 |
|
130 |
submit.click(
|
131 |
process_file,
|
132 |
+
inputs=[file, instructions, api_key, graph_type],
|
133 |
outputs=output_images
|
134 |
)
|
135 |
|