|
import gradio as gr |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import io |
|
import ast |
|
from PIL import Image, ImageDraw |
|
import google.generativeai as genai |
|
import traceback |
|
|
|
def process_file(file, instructions, api_key): |
|
try: |
|
|
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') |
|
|
|
|
|
file_path = file.name |
|
df = pd.read_csv(file_path) if file_path.endswith('.csv') else pd.read_excel(file_path) |
|
|
|
|
|
response = model.generate_content(f""" |
|
Analyze the following dataset and instructions: |
|
|
|
Data columns: {list(df.columns)} |
|
Instructions: {instructions} |
|
|
|
Based on this, create 3 appropriate visualizations. For each visualization, provide: |
|
1. A title |
|
2. The most suitable plot type (choose from: bar, line, scatter, hist) |
|
3. The column to use for the x-axis |
|
4. The column(s) to use for the y-axis (can be a list for multiple columns, or None for histograms) |
|
5. Any necessary data preprocessing steps (e.g., grouping, sorting, etc.) |
|
|
|
Return your response as a Python list of dictionaries: |
|
[ |
|
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}}, |
|
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}}, |
|
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}} |
|
] |
|
""") |
|
|
|
|
|
code_block = response.text |
|
if '```python' in code_block: |
|
code_block = code_block.split('```python')[1].split('```')[0].strip() |
|
elif '```' in code_block: |
|
code_block = code_block.split('```')[1].strip() |
|
|
|
print("Generated code block:") |
|
print(code_block) |
|
|
|
plots = ast.literal_eval(code_block) |
|
|
|
|
|
images = [] |
|
for plot in plots[:3]: |
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
|
|
|
|
plot_df = df.copy() |
|
if 'Group data by' in plot['preprocessing']: |
|
group_by = plot['x'] |
|
agg_column = plot['y'][0] if isinstance(plot['y'], list) else plot['y'] |
|
plot_df = plot_df.groupby(group_by)[agg_column].sum().reset_index() |
|
if 'Sort' in plot['preprocessing']: |
|
plot_df = plot_df.sort_values(by=plot['y'][0] if isinstance(plot['y'], list) else plot['y'], ascending=False) |
|
if 'Filter to keep only the top 5' in plot['preprocessing']: |
|
plot_df = plot_df.head(5) |
|
|
|
if plot['plot_type'] == 'bar': |
|
plot_df.plot(kind='bar', x=plot['x'], y=plot['y'], ax=ax) |
|
elif plot['plot_type'] == 'line': |
|
plot_df.plot(kind='line', x=plot['x'], y=plot['y'], ax=ax) |
|
elif plot['plot_type'] == 'scatter': |
|
plot_df.plot(kind='scatter', x=plot['x'], y=plot['y'], ax=ax) |
|
elif plot['plot_type'] == 'hist': |
|
plot_df[plot['x']].hist(ax=ax) |
|
|
|
ax.set_title(plot['title']) |
|
ax.set_xlabel(plot['x']) |
|
ax.set_ylabel(plot['y'][0] if isinstance(plot['y'], list) else plot['y']) |
|
plt.tight_layout() |
|
|
|
buf = io.BytesIO() |
|
plt.savefig(buf, format='png') |
|
buf.seek(0) |
|
img = Image.open(buf) |
|
images.append(img) |
|
plt.close(fig) |
|
|
|
return images if len(images) == 3 else images + [Image.new('RGB', (800, 600), (255,255,255))]*(3-len(images)) |
|
|
|
except Exception as e: |
|
error_message = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" |
|
print(error_message) |
|
error_image = Image.new('RGB', (800, 400), (255, 255, 255)) |
|
draw = ImageDraw.Draw(error_image) |
|
draw.text((10, 10), error_message, fill=(255, 0, 0)) |
|
return [error_image] * 3 |
|
|
|
with gr.Blocks(theme=gr.themes.Default()) as demo: |
|
gr.Markdown("# Data Analysis Dashboard") |
|
|
|
with gr.Row(): |
|
file = gr.File(label="Upload Dataset", file_types=[".csv", ".xlsx"]) |
|
instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...") |
|
|
|
api_key = gr.Textbox(label="Gemini API Key", type="password") |
|
submit = gr.Button("Generate Insights", variant="primary") |
|
|
|
output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)] |
|
|
|
submit.click( |
|
process_file, |
|
inputs=[file, instructions, api_key], |
|
outputs=output_images |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |