Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import gradio as gr | |
MODEL_URL = "MichalMlodawski/nsfw-text-detection-large" | |
TITLE = "🖼️🔍 Image Prompt Safety Classifier 🛡️" | |
DESCRIPTION = "✨ Enter an image generation prompt to classify its safety level! ✨" | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL) | |
# Define class names with emojis and detailed descriptions | |
CLASS_NAMES = { | |
0: "✅ SAFE - This prompt is appropriate and harmless.", | |
1: "⚠️ QUESTIONABLE - This prompt may require further review.", | |
2: "🚫 UNSAFE - This prompt is likely to generate inappropriate content." | |
} | |
def classify_text(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=1024) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=1).item() | |
return CLASS_NAMES[predicted_class] | |
# Define Gradio interface | |
def gradio_interface(text): | |
classification = classify_text(text) | |
return f"🏷️ Classification: {classification}" | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Textbox(lines=3, placeholder="🖊️ Enter your image generation prompt here..."), | |
outputs=gr.Textbox(label="🔎 Classification Result"), | |
title=TITLE, | |
description=DESCRIPTION, | |
examples=[ | |
["A beautiful sunset over a calm ocean"], | |
["An inappropriate scene involving explicit content"] | |
], | |
theme=gr.themes.Soft(primary_hue="blue"), | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch() |