Michaeldavidstein commited on
Commit
2bc3aa9
1 Parent(s): 3dd1e62

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +77 -0
  2. model.joblib +3 -0
  3. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import joblib
4
+
5
+
6
+ age_input = gr.Number(label="Age")
7
+ duration_input = gr.Number(label='Duration(Sec)')
8
+ cc_contact_freq_input = gr.Number(label='CC Contact Freq')
9
+ days_since_pc_input = gr.Number(label='Days Since PC')
10
+ pc_contact_freq_input = gr.Number(label='Pc Contact Freq')
11
+ job_input = gr.Dropdown(['admin.', 'blue-collar', 'technician', 'services', 'management',
12
+ 'retired', 'entrepreneur', 'self-employed', 'housemaid', 'unemployed',
13
+ 'student', 'unknown'],label="Job")
14
+ marital_input = gr.Dropdown(['married', 'single', 'divorced', 'unknown'],label='Marital Status')
15
+ education_input = gr.Dropdown(['experience', 'university degree', 'high school', 'professional.course',
16
+ 'Others', 'illiterate'],label='Education')
17
+ defaulter_input = gr.Dropdown(['no', 'unknown', 'yes'],label='Defaulter')
18
+ home_loan_input = gr.Dropdown(['yes', 'no', 'unknown'],label='Home Loan')
19
+ personal_loan_input = gr.Dropdown(['yes', 'no', 'unknown'],label='Personal Loan')
20
+ communication_type_input = gr.Dropdown(['cellular', 'telephone'],label='Communication Type')
21
+ last_contacted_input = gr.Dropdown(['may', 'jul', 'aug', 'jun', 'nov', 'apr', 'oct', 'mar', 'sep', 'dec'],label='Last Contacted')
22
+ day_of_week_input = gr.Dropdown(['thu', 'mon', 'wed', 'tue', 'fri'],label='Day of Week')
23
+ pc_outcome_input = gr.Dropdown(['nonexistent', 'failure', 'success'], label='PC Outcome')
24
+
25
+ o = gr.Textbox()
26
+
27
+ # load the model
28
+ model = joblib.load('model.joblib')
29
+ i2l = ['Not subscribed', 'Subscribed']
30
+ def fn(age, duration, cc_contact_freq, days_since_pc, pc_contact_freq, job, marital_status, education,
31
+ defaulter, home_loan, personal_loan, communication_type, last_contacted,
32
+ day_of_week, pc_outcome):
33
+ sample = {
34
+ 'Age': age,
35
+ 'Duration(Sec)': duration,
36
+ 'CC Contact Freq': cc_contact_freq,
37
+ 'Days Since PC': days_since_pc,
38
+ 'PC Contact Freq': pc_contact_freq,
39
+ 'Job': job,
40
+ 'Marital Status': marital_status,
41
+ 'Education': education,
42
+ 'Defaulter': defaulter,
43
+ 'Home Loan': home_loan,
44
+ 'Personal Loan': personal_loan,
45
+ 'Communication Type': communication_type,
46
+ 'Last Contacted': last_contacted,
47
+ 'Day of Week': day_of_week,
48
+ 'PC Outcome': pc_outcome,
49
+ }
50
+ print(f'sample: {sample}')
51
+ data_point = pd.DataFrame([sample])
52
+ print(f'{data_point}')
53
+ result = model.predict(data_point)
54
+ result = result[0]
55
+ print(result)
56
+ return i2l[result]
57
+
58
+
59
+ interface = gr.Interface(fn,
60
+ inputs = [age_input,
61
+ duration_input,
62
+ cc_contact_freq_input,
63
+ days_since_pc_input,
64
+ pc_contact_freq_input,
65
+ job_input,
66
+ marital_input,
67
+ education_input,
68
+ defaulter_input,
69
+ home_loan_input,
70
+ personal_loan_input,
71
+ communication_type_input,
72
+ last_contacted_input,
73
+ day_of_week_input,
74
+ pc_outcome_input],
75
+ outputs = o)
76
+
77
+ interface.launch(share=True)
model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3c382c7233f0463a9c2698c7190fa6a89f2704433ae79735d9a6a1acfb5529
3
+ size 8439
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ joblib
2
+ scikit-learn==1.2.2