Spaces:
Running
Running
import json | |
import os | |
from typing import Any, Dict | |
import pandas as pd | |
from huggingface_hub import HfApi, hf_hub_download | |
from required_categories import required_mmlu_categories, required_unified_exam_categories | |
class ModelHandler: | |
def __init__(self, model_infos_path="model_results.json"): | |
self.api = HfApi() | |
self.model_infos_path = model_infos_path | |
self.model_infos = self._load_model_infos() | |
def _load_model_infos(self) -> Dict: | |
if os.path.exists(self.model_infos_path): | |
with open(self.model_infos_path) as f: | |
return json.load(f) | |
return {} | |
def _save_model_infos(self): | |
print("Saving model infos") | |
with open(self.model_infos_path, "w") as f: | |
json.dump(self.model_infos, f, indent=4) | |
def get_arm_bench_data(self): | |
models = self.api.list_models(filter="ArmBench-LLM") | |
model_names = {model["model_name"] for model in self.model_infos} | |
repositories = [model.modelId for model in models] | |
for repo_id in repositories: | |
files = [f for f in self.api.list_repo_files(repo_id) if f == "results.json"] | |
if not files: | |
continue | |
for file in files: | |
model_name = repo_id | |
if model_name not in model_names: | |
try: | |
result_path = hf_hub_download(repo_id, filename=file) | |
with open(result_path) as f: | |
results = json.load(f) | |
self.model_infos.append({ | |
"model_name": model_name, | |
"results": results | |
}) | |
except Exception as e: | |
print(f"Error loading {model_name} - {e}") | |
continue | |
self._save_model_infos() | |
mmlu_data = [] | |
unified_exam_data = [] | |
for model in self.model_infos: | |
model_name = model["model_name"] | |
results = model.get("results", {}) | |
mmlu_results = results.get("mmlu_results", []) | |
unified_exam_results = results.get("unified_exam_results", []) | |
if mmlu_results: | |
mmlu_row = {"Model": model_name} | |
mmlu_categories = {result["category"] for result in mmlu_results} | |
if all(category in mmlu_categories for category in required_mmlu_categories): | |
for result in mmlu_results: | |
mmlu_row[result["category"]] = result["score"] | |
mmlu_data.append(mmlu_row) | |
if unified_exam_results: | |
unified_exam_row = {"Model": model_name} | |
unified_exam_categories = {result["category"] for result in unified_exam_results} | |
if all(category in unified_exam_categories for category in required_unified_exam_categories): | |
for result in unified_exam_results: | |
unified_exam_row[result["category"]] = result["score"] | |
unified_exam_data.append(unified_exam_row) | |
mmlu_df = pd.DataFrame(mmlu_data) | |
unified_exam_df = pd.DataFrame(unified_exam_data) | |
return mmlu_df, unified_exam_df |