Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- Dockerfile +17 -0
- README.md +53 -13
- app.py +127 -0
- constants.py +2 -0
- requirements.txt +10 -0
- search.py +108 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.8.15
|
2 |
+
|
3 |
+
WORKDIR /Users/me_teor21/Workspace/item-search
|
4 |
+
|
5 |
+
COPY requirements.txt ./
|
6 |
+
|
7 |
+
RUN pip install -r requirements.txt
|
8 |
+
|
9 |
+
COPY search.py ./
|
10 |
+
|
11 |
+
COPY app.py ./
|
12 |
+
|
13 |
+
COPY constants.py ./
|
14 |
+
|
15 |
+
# COPY . .
|
16 |
+
|
17 |
+
ENTRYPOINT ["python", "app.py"]
|
README.md
CHANGED
@@ -1,13 +1,53 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Shopping Search Engine
|
2 |
+
|
3 |
+
## Description
|
4 |
+
|
5 |
+
Look for the ideal clothing items 😎
|
6 |
+
|
7 |
+
## Instructions
|
8 |
+
|
9 |
+
1. Install libraries
|
10 |
+
|
11 |
+
```
|
12 |
+
pip install -r requirements.txt
|
13 |
+
```
|
14 |
+
|
15 |
+
2. Run
|
16 |
+
|
17 |
+
```
|
18 |
+
python app.py
|
19 |
+
```
|
20 |
+
|
21 |
+
## Build and run container
|
22 |
+
|
23 |
+
1. Build container (uncomment launch call in app.py)
|
24 |
+
|
25 |
+
```
|
26 |
+
docker build --tag item-search .
|
27 |
+
```
|
28 |
+
|
29 |
+
2. Run container
|
30 |
+
|
31 |
+
```
|
32 |
+
docker run -it -d --name item-search-engine -p 7000:7000 item-search:latest
|
33 |
+
```
|
34 |
+
|
35 |
+
## Structure
|
36 |
+
|
37 |
+
```
|
38 |
+
.
|
39 |
+
├── app.py
|
40 |
+
├── Dockerfile
|
41 |
+
├── LICENSE
|
42 |
+
├── README.md
|
43 |
+
├── search.py
|
44 |
+
└── requirements.txt
|
45 |
+
```
|
46 |
+
|
47 |
+
## Author
|
48 |
+
|
49 |
+
[Ismael C.](https://ismaelmekene.com)
|
50 |
+
|
51 |
+
## License
|
52 |
+
|
53 |
+
Licensed under the MIT License, Version 2.0.
|
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import os
|
5 |
+
from pinecone import Pinecone, ServerlessSpec
|
6 |
+
from pinecone_text.sparse import BM25Encoder
|
7 |
+
from datasets import load_dataset
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import torch
|
10 |
+
from io import BytesIO
|
11 |
+
from base64 import b64encode
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from PIL import Image
|
14 |
+
import gradio as gr
|
15 |
+
from constants import *
|
16 |
+
|
17 |
+
from search import SearchItem
|
18 |
+
|
19 |
+
from fastapi import FastAPI
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# initialize connection to pinecone (get API key at app.pinecone.io)
|
27 |
+
api_key = PINECONE_API_KEY or os.getenv(PINECONE_API_KEY) # or "PINECONE_API_KEY"
|
28 |
+
# find your environment next to the api key in pinecone console
|
29 |
+
env = PINECONE_ENVIRONMENT or os.getenv(PINECONE_ENVIRONMENT) # or "PINECONE_ENVIRONMENT"
|
30 |
+
|
31 |
+
fashion_processor = SearchItem(api_key, env)
|
32 |
+
|
33 |
+
|
34 |
+
def retrieve_images(query, image=None):
|
35 |
+
if image:
|
36 |
+
# If image is provided, use retrieve_image_from_image function
|
37 |
+
return retrieve_image_from_image(image, query)
|
38 |
+
else:
|
39 |
+
# If image is not provided, use retrieve_image_from_query function
|
40 |
+
return retrieve_image_from_query(query)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def retrieve_image_from_query(query):
|
45 |
+
|
46 |
+
# create sparse and dense vectors
|
47 |
+
sparse = fashion_processor.bm25.encode_queries(query)
|
48 |
+
dense = fashion_processor.clip_model.encode(query).tolist()
|
49 |
+
hdense, hsparse = fashion_processor.hybrid_scale(dense, sparse)
|
50 |
+
|
51 |
+
result = fashion_processor.index.query(
|
52 |
+
top_k=10,
|
53 |
+
vector=hdense,
|
54 |
+
sparse_vector=hsparse,
|
55 |
+
include_metadata=True
|
56 |
+
)
|
57 |
+
|
58 |
+
imgs = [fashion_processor.images[int(r["id"])] for r in result["matches"]]
|
59 |
+
|
60 |
+
return imgs
|
61 |
+
|
62 |
+
|
63 |
+
def retrieve_image_from_image(image, query):
|
64 |
+
|
65 |
+
try:
|
66 |
+
# create sparse and dense vectors
|
67 |
+
sparse = fashion_processor.bm25.encode_queries(query)
|
68 |
+
w, h = 60, 80
|
69 |
+
image = Image.open(image.name).resize((w, h))
|
70 |
+
dense = fashion_processor.clip_model.encode(image).tolist()
|
71 |
+
hdense, hsparse = fashion_processor.hybrid_scale(dense, sparse)
|
72 |
+
|
73 |
+
|
74 |
+
result = fashion_processor.index.query(
|
75 |
+
top_k=10,
|
76 |
+
vector=hdense,
|
77 |
+
sparse_vector=hsparse,
|
78 |
+
include_metadata=True
|
79 |
+
)
|
80 |
+
|
81 |
+
imgs = [fashion_processor.images[int(r["id"])] for r in result["matches"]]
|
82 |
+
|
83 |
+
return imgs
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
# print(f"Error processing image: {e}")
|
87 |
+
print(e)
|
88 |
+
return None
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def show_img(image):
|
93 |
+
return image.name if image else "No image provided"
|
94 |
+
|
95 |
+
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
gr.Markdown(
|
98 |
+
"""
|
99 |
+
# Shopping Search Engine
|
100 |
+
|
101 |
+
Look for the ideal clothing items 😎
|
102 |
+
""")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
|
107 |
+
query = gr.Textbox(placeholder="Search Items")
|
108 |
+
gr.HTML("OR")
|
109 |
+
photo = gr.Image()
|
110 |
+
with gr.Row():
|
111 |
+
button = gr.UploadButton(label="Upload Image", file_types=["image"])
|
112 |
+
textbox = gr.Textbox(placeholder="Additional Details ?")
|
113 |
+
submit_button = gr.Button(text="Submit")
|
114 |
+
|
115 |
+
with gr.Column():
|
116 |
+
gallery = gr.Gallery().style(
|
117 |
+
object_fit='contain',
|
118 |
+
height='auto',
|
119 |
+
preview=True
|
120 |
+
)
|
121 |
+
|
122 |
+
query.submit(fn=lambda query: retrieve_images(query), inputs=[query], outputs=[gallery])
|
123 |
+
submit_button.click(fn=lambda image, query: show_img(image), inputs=[button, textbox], outputs=[photo]) \
|
124 |
+
.then(fn=lambda image, query: retrieve_images(query, image), inputs=[button, textbox], outputs=[gallery])
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
demo.launch(server_name="0.0.0.0", server_port=8000)
|
constants.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
PINECONE_API_KEY = '810e1b45-1489-41a8-998e-1ed0fb2d21a5'
|
2 |
+
PINECONE_ENVIRONMENT = 'gcp-starter'
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
+
huggingface-hub
|
5 |
+
pinecone-client
|
6 |
+
pinecone-text
|
7 |
+
protobuf==3.20.3
|
8 |
+
gradio==3.41.2
|
9 |
+
fastapi
|
10 |
+
uvicorn==0.23.1
|
search.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import os
|
5 |
+
from pinecone import Pinecone, ServerlessSpec
|
6 |
+
from pinecone_text.sparse import BM25Encoder
|
7 |
+
from datasets import load_dataset
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import torch
|
10 |
+
from io import BytesIO
|
11 |
+
from base64 import b64encode
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from constants import *
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
# initialize connection to pinecone (get API key at app.pinecone.io)
|
18 |
+
api_key = PINECONE_API_KEY or os.getenv(PINECONE_API_KEY) # or "PINECONE_API_KEY"
|
19 |
+
# find your environment next to the api key in pinecone console
|
20 |
+
env = PINECONE_ENVIRONMENT or os.getenv(PINECONE_ENVIRONMENT) # or "PINECONE_ENVIRONMENT"
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
class SearchItem():
|
25 |
+
def __init__(self, api_key=None, env=None, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
26 |
+
self.api_key = api_key
|
27 |
+
self.environment = env
|
28 |
+
self.pinecone_instance = self.connect_to_pinecone(self.api_key,self.environment)
|
29 |
+
self.index = self.pinecone_instance.Index('clip')
|
30 |
+
self.images, self.metadata = self.load_fashion_dataset()
|
31 |
+
self.clip_model = self.initialize_clip_model(device=device)
|
32 |
+
self.bm25 = self.initialize_bm25_encoder(self.metadata)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def connect_to_pinecone(self, api_key, env):
|
37 |
+
api_key = api_key or os.getenv('PINECONE_API_KEY')
|
38 |
+
env = env or os.getenv('PINECONE_ENVIRONMENT')
|
39 |
+
|
40 |
+
if not api_key or not env:
|
41 |
+
raise ValueError("Pinecone API key and environment are required.")
|
42 |
+
|
43 |
+
pinecone_instance = Pinecone(api_key=api_key, environment=env)
|
44 |
+
return pinecone_instance
|
45 |
+
|
46 |
+
def load_fashion_dataset(self):
|
47 |
+
fashion = load_dataset("ashraq/fashion-product-images-small", split="train")
|
48 |
+
images = fashion["image"]
|
49 |
+
metadata = fashion.remove_columns("image").to_pandas()
|
50 |
+
return images, metadata
|
51 |
+
|
52 |
+
def initialize_clip_model(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
53 |
+
model = SentenceTransformer('sentence-transformers/clip-ViT-B-32', device=device)
|
54 |
+
return model
|
55 |
+
|
56 |
+
def initialize_bm25_encoder(self, metadata):
|
57 |
+
bm25 = BM25Encoder()
|
58 |
+
bm25.fit(metadata['productDisplayName'])
|
59 |
+
return bm25
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def hybrid_scale(dense, sparse, alpha=0.05):
|
63 |
+
"""Hybrid vector scaling using a convex combination
|
64 |
+
|
65 |
+
alpha * dense + (1 - alpha) * sparse
|
66 |
+
|
67 |
+
Args:
|
68 |
+
dense: Array of floats representing
|
69 |
+
sparse: a dict of `indices` and `values`
|
70 |
+
alpha: float between 0 and 1 where 0 == sparse only
|
71 |
+
and 1 == dense only
|
72 |
+
"""
|
73 |
+
if alpha < 0 or alpha > 1:
|
74 |
+
raise ValueError("Alpha must be between 0 and 1")
|
75 |
+
|
76 |
+
# Scale sparse and dense vectors to create hybrid search vectors
|
77 |
+
hsparse = {
|
78 |
+
'indices': sparse['indices'],
|
79 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
80 |
+
}
|
81 |
+
hdense = [v * alpha for v in dense]
|
82 |
+
|
83 |
+
return hdense, hsparse
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
|
88 |
+
|
89 |
+
fashion_processor = SearchItem(api_key, env)
|
90 |
+
|
91 |
+
query = "blue shoes"
|
92 |
+
# create sparse and dense vectors
|
93 |
+
sparse = fashion_processor.bm25.encode_queries(query)
|
94 |
+
dense = fashion_processor.clip_model.encode(query).tolist()
|
95 |
+
|
96 |
+
hdense, hsparse = fashion_processor.hybrid_scale(dense, sparse)
|
97 |
+
|
98 |
+
result = fashion_processor.index.query(
|
99 |
+
top_k=5,
|
100 |
+
vector=hdense,
|
101 |
+
sparse_vector=hsparse,
|
102 |
+
include_metadata=True
|
103 |
+
)
|
104 |
+
|
105 |
+
imgs = [fashion_processor.images[int(r["id"])] for r in result["matches"]]
|
106 |
+
|
107 |
+
print('Ok')
|
108 |
+
# breakpoint()
|