Update app.py
Browse files
app.py
CHANGED
|
@@ -1,240 +1,240 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from rag_pipeline import build_rag_pipeline
|
| 3 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 4 |
-
|
| 5 |
-
# --- PAGE CONFIG ---
|
| 6 |
-
st.set_page_config(
|
| 7 |
-
page_title="π¬
|
| 8 |
-
page_icon="π«",
|
| 9 |
-
layout="centered",
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
# --- CUSTOM CSS (bubbles + badge) ---
|
| 13 |
-
st.markdown("""
|
| 14 |
-
<style>
|
| 15 |
-
.main-title { text-align: center; font-size: 2.2em; font-weight: 700; color: #4A90E2; }
|
| 16 |
-
.subtitle { text-align: center; font-size: 1.1em; color: #666; margin-bottom: 1.5em; }
|
| 17 |
-
.user-bubble {
|
| 18 |
-
background: linear-gradient(180deg, #dbe9ff, #c7ddff);
|
| 19 |
-
padding: 0.75em 1em;
|
| 20 |
-
border-radius: 12px;
|
| 21 |
-
margin: 0.5em 0 0.25em 0;
|
| 22 |
-
max-width: 80%;
|
| 23 |
-
}
|
| 24 |
-
.assistant-bubble {
|
| 25 |
-
background: #f5f7fa;
|
| 26 |
-
padding: 0.9em 1em;
|
| 27 |
-
border-radius: 12px;
|
| 28 |
-
margin: 0.25em 0 0.8em 0;
|
| 29 |
-
border: 1px solid #e1e4e8;
|
| 30 |
-
max-width: 80%;
|
| 31 |
-
}
|
| 32 |
-
.meta-badge {
|
| 33 |
-
display: inline-block;
|
| 34 |
-
font-size: 0.72em;
|
| 35 |
-
padding: 2px 8px;
|
| 36 |
-
border-radius: 999px;
|
| 37 |
-
margin-left: 8px;
|
| 38 |
-
vertical-align: middle;
|
| 39 |
-
}
|
| 40 |
-
.badge-dataset { background: #fff6ea; color: #b36b00; border: 1px solid #f0e68c; }
|
| 41 |
-
.badge-general { background: #eefcf3; color: #0a7f53; border: 1px solid #bfead4; }
|
| 42 |
-
.doc-box { background-color: #fffbe6; padding: 0.6em 0.8em; border-radius: 8px; border: 1px solid #f0e68c; margin-bottom: 0.5em; }
|
| 43 |
-
.doc-q { font-weight: 600; color: #333; }
|
| 44 |
-
.doc-a { color: #555; }
|
| 45 |
-
|
| 46 |
-
/* Make chat area scrollable and avoid hiding under input */
|
| 47 |
-
.chat-area {
|
| 48 |
-
max-height: 70vh;
|
| 49 |
-
overflow-y: auto;
|
| 50 |
-
padding-right: 8px;
|
| 51 |
-
padding-bottom: 120px; /* Space for input bar */
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
/* Fix the input container at the bottom */
|
| 55 |
-
.input-container {
|
| 56 |
-
position: fixed;
|
| 57 |
-
bottom: 0;
|
| 58 |
-
left: 0;
|
| 59 |
-
right: 0;
|
| 60 |
-
background-color: #ffffff;
|
| 61 |
-
padding: 1rem 2rem;
|
| 62 |
-
box-shadow: 0 -2px 10px rgba(0, 0, 0, 0.05);
|
| 63 |
-
z-index: 999;
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
/* Optional: make buttons line up neatly */
|
| 67 |
-
.stButton button {
|
| 68 |
-
height: 2.5em;
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
/* Hide Streamlit footer and hamburger for cleaner look */
|
| 72 |
-
#MainMenu {visibility: hidden;}
|
| 73 |
-
footer {visibility: hidden;}
|
| 74 |
-
header {visibility: hidden;}
|
| 75 |
-
</style>
|
| 76 |
-
""", unsafe_allow_html=True)
|
| 77 |
-
|
| 78 |
-
# --- HEADER ---
|
| 79 |
-
st.markdown('<div class="main-title">π¬ MoodMate</div>', unsafe_allow_html=True)
|
| 80 |
-
st.markdown('<div class="subtitle">Ask anything about personal, social, or business growth β powered by RAG + Gemini</div>', unsafe_allow_html=True)
|
| 81 |
-
|
| 82 |
-
add_vertical_space(2)
|
| 83 |
-
|
| 84 |
-
# --- LOAD PIPELINE ---
|
| 85 |
-
@st.cache_resource
|
| 86 |
-
def load_chain():
|
| 87 |
-
return build_rag_pipeline()
|
| 88 |
-
|
| 89 |
-
llm, retriever, rag_chain = load_chain()
|
| 90 |
-
|
| 91 |
-
# --- USER SETTINGS ---
|
| 92 |
-
st.markdown("### βοΈ Answer Selection Settings")
|
| 93 |
-
|
| 94 |
-
# Automatic vs Manual mode
|
| 95 |
-
auto_mode = st.checkbox("Automatic answer selection (default)", value=True)
|
| 96 |
-
|
| 97 |
-
# Manual answer type selection appears only if auto_mode is off
|
| 98 |
-
if not auto_mode:
|
| 99 |
-
answer_type = st.radio(
|
| 100 |
-
"Select answer type:",
|
| 101 |
-
("Dataset-Based Answer", "General Reasoning Answer"),
|
| 102 |
-
index=0
|
| 103 |
-
)
|
| 104 |
-
add_vertical_space(1)
|
| 105 |
-
|
| 106 |
-
# --- SESSION STATE MEMORY ---
|
| 107 |
-
if "chat_history" not in st.session_state:
|
| 108 |
-
st.session_state.chat_history = []
|
| 109 |
-
|
| 110 |
-
# Ensure input_box key exists so it persists across runs
|
| 111 |
-
if "input_box" not in st.session_state:
|
| 112 |
-
st.session_state.input_box = ""
|
| 113 |
-
|
| 114 |
-
# --- LAYOUT: chat area + input at bottom ---
|
| 115 |
-
chat_col = st.container()
|
| 116 |
-
|
| 117 |
-
# Render chat area (so it updates live on each run)
|
| 118 |
-
with chat_col:
|
| 119 |
-
st.markdown("## π¬ Conversation")
|
| 120 |
-
chat_area = st.container()
|
| 121 |
-
with chat_area:
|
| 122 |
-
# Render each turn in order
|
| 123 |
-
for i, turn in enumerate(st.session_state.chat_history):
|
| 124 |
-
# User bubble (left)
|
| 125 |
-
st.markdown(f'<div class="user-bubble">π§ You: {turn["user"]}</div>', unsafe_allow_html=True)
|
| 126 |
-
|
| 127 |
-
# Assistant bubble with subtle badge
|
| 128 |
-
typ = turn.get("type", "General Reasoning")
|
| 129 |
-
badge_html = (
|
| 130 |
-
f'<span class="meta-badge badge-dataset">Dataset-Based</span>'
|
| 131 |
-
if typ == "Dataset-Based Answer"
|
| 132 |
-
else f'<span class="meta-badge badge-general">General Reasoning</span>'
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
st.markdown(f'<div class="assistant-bubble">π€ Assistant: {turn["ai"]} {badge_html}</div>', unsafe_allow_html=True)
|
| 136 |
-
|
| 137 |
-
# If dataset-based and has docs, show small expander for docs
|
| 138 |
-
if turn.get("type") == "Dataset-Based Answer" and turn.get("docs"):
|
| 139 |
-
with st.expander(f"π Top Retrieved Documents for message {i+1}"):
|
| 140 |
-
for d in turn["docs"][:3]:
|
| 141 |
-
parts = d.page_content.split("\n")
|
| 142 |
-
q_text = parts[0].replace("Q: ", "") if len(parts) > 0 else ""
|
| 143 |
-
a_text = parts[1].replace("A: ", "") if len(parts) > 1 else ""
|
| 144 |
-
st.markdown(
|
| 145 |
-
f'<div class="doc-box"><div class="doc-q">Q: {q_text}</div><div class="doc-a">A: {a_text}</div></div>',
|
| 146 |
-
unsafe_allow_html=True
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
# --- SEND CALLBACK LOGIC ---
|
| 150 |
-
def handle_send():
|
| 151 |
-
query = st.session_state.input_box.strip()
|
| 152 |
-
if not query:
|
| 153 |
-
st.warning("Please enter a message.")
|
| 154 |
-
return
|
| 155 |
-
|
| 156 |
-
with st.spinner("π Thinking and retrieving relevant information..."):
|
| 157 |
-
# --- Build unified chat history for contextual prompting ---
|
| 158 |
-
N_keep = 6 # keep last 6 turns
|
| 159 |
-
history_for_prompt = st.session_state.chat_history[-N_keep:]
|
| 160 |
-
full_prompt = ""
|
| 161 |
-
for turn in history_for_prompt:
|
| 162 |
-
full_prompt += f"User: {turn['user']}\nAI: {turn['ai']}\n"
|
| 163 |
-
full_prompt += f"User: {query}\nAI:"
|
| 164 |
-
|
| 165 |
-
rag_answer, general_answer, docs = "", "", []
|
| 166 |
-
|
| 167 |
-
# --- AUTO MODE ---
|
| 168 |
-
if auto_mode:
|
| 169 |
-
# Step 1: Try dataset-based (RAG) first
|
| 170 |
-
rag_result = rag_chain({"question": query})
|
| 171 |
-
rag_answer = rag_result.get("answer", "")
|
| 172 |
-
docs = rag_result.get("source_documents", [])
|
| 173 |
-
|
| 174 |
-
# Step 2: Evaluate RAG answer quality
|
| 175 |
-
# Automatically decide whether to show the dataset-based answer or fall back to general reasoning
|
| 176 |
-
# Explanation:
|
| 177 |
-
# - any(kw in rag_answer.lower() for kw in fallback_keywords): checks if any "bad" keyword appears
|
| 178 |
-
# - len(rag_answer.strip()) < 50: checks if the dataset-based answer is too short (likely low quality)
|
| 179 |
-
# - not (...): inverts the condition β we show dataset answer only if itβs *good enough*
|
| 180 |
-
fallback_keywords = ["cannot answer", "no information", "based on the context", "i'm sorry"]
|
| 181 |
-
rag_too_short = len(rag_answer.strip()) < 50
|
| 182 |
-
rag_weak = any(kw in rag_answer.lower() for kw in fallback_keywords)
|
| 183 |
-
|
| 184 |
-
if rag_weak or rag_too_short:
|
| 185 |
-
# Step 3: Fallback to general reasoning ONLY if RAG is weak
|
| 186 |
-
general_response_obj = llm.invoke(full_prompt)
|
| 187 |
-
general_answer = getattr(general_response_obj, "content", str(general_response_obj))
|
| 188 |
-
chosen_answer = general_answer
|
| 189 |
-
chosen_type = "General Reasoning"
|
| 190 |
-
else:
|
| 191 |
-
chosen_answer = rag_answer
|
| 192 |
-
chosen_type = "Dataset-Based Answer"
|
| 193 |
-
|
| 194 |
-
# --- MANUAL MODE ---
|
| 195 |
-
else:
|
| 196 |
-
if answer_type == "Dataset-Based Answer":
|
| 197 |
-
rag_result = rag_chain({"question": query})
|
| 198 |
-
rag_answer = rag_result.get("answer", "")
|
| 199 |
-
docs = rag_result.get("source_documents", [])
|
| 200 |
-
chosen_answer = rag_answer
|
| 201 |
-
chosen_type = "Dataset-Based Answer"
|
| 202 |
-
else:
|
| 203 |
-
general_response_obj = llm.invoke(full_prompt)
|
| 204 |
-
general_answer = getattr(general_response_obj, "content", str(general_response_obj))
|
| 205 |
-
chosen_answer = general_answer
|
| 206 |
-
chosen_type = "General Reasoning"
|
| 207 |
-
|
| 208 |
-
# --- Append to unified chat history ---
|
| 209 |
-
st.session_state.chat_history.append({
|
| 210 |
-
"user": query,
|
| 211 |
-
"ai": chosen_answer,
|
| 212 |
-
"type": chosen_type,
|
| 213 |
-
"docs": docs if chosen_type == "Dataset-Based Answer" else None
|
| 214 |
-
})
|
| 215 |
-
|
| 216 |
-
# β
Clear input after sending
|
| 217 |
-
st.session_state.input_box = ""
|
| 218 |
-
|
| 219 |
-
# --- INPUT AREA (stays at bottom) ---
|
| 220 |
-
# --- FIXED INPUT BAR ---
|
| 221 |
-
st.markdown('<div class="input-container">', unsafe_allow_html=True)
|
| 222 |
-
|
| 223 |
-
query = st.text_input(
|
| 224 |
-
"π Type your message here...",
|
| 225 |
-
key="input_box",
|
| 226 |
-
placeholder="e.g. How can I improve my communication skills?",
|
| 227 |
-
label_visibility="collapsed"
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
col1, col2 = st.columns([0.2, 0.8])
|
| 231 |
-
with col1:
|
| 232 |
-
st.button("Send π¬", key="send_button", on_click=handle_send)
|
| 233 |
-
with col2:
|
| 234 |
-
st.button("π§Ή Clear Chat", key="clear_button", help="Clears conversation history (not persistent).", on_click=lambda: (
|
| 235 |
-
st.session_state.chat_history.clear(),
|
| 236 |
-
st.session_state.update({"input_box": ""}),
|
| 237 |
-
st.rerun()
|
| 238 |
-
))
|
| 239 |
-
|
| 240 |
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from rag_pipeline import build_rag_pipeline
|
| 3 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 4 |
+
|
| 5 |
+
# --- PAGE CONFIG ---
|
| 6 |
+
st.set_page_config(
|
| 7 |
+
page_title="π¬ MoodMate",
|
| 8 |
+
page_icon="π«",
|
| 9 |
+
layout="centered",
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# --- CUSTOM CSS (bubbles + badge) ---
|
| 13 |
+
st.markdown("""
|
| 14 |
+
<style>
|
| 15 |
+
.main-title { text-align: center; font-size: 2.2em; font-weight: 700; color: #4A90E2; }
|
| 16 |
+
.subtitle { text-align: center; font-size: 1.1em; color: #666; margin-bottom: 1.5em; }
|
| 17 |
+
.user-bubble {
|
| 18 |
+
background: linear-gradient(180deg, #dbe9ff, #c7ddff);
|
| 19 |
+
padding: 0.75em 1em;
|
| 20 |
+
border-radius: 12px;
|
| 21 |
+
margin: 0.5em 0 0.25em 0;
|
| 22 |
+
max-width: 80%;
|
| 23 |
+
}
|
| 24 |
+
.assistant-bubble {
|
| 25 |
+
background: #f5f7fa;
|
| 26 |
+
padding: 0.9em 1em;
|
| 27 |
+
border-radius: 12px;
|
| 28 |
+
margin: 0.25em 0 0.8em 0;
|
| 29 |
+
border: 1px solid #e1e4e8;
|
| 30 |
+
max-width: 80%;
|
| 31 |
+
}
|
| 32 |
+
.meta-badge {
|
| 33 |
+
display: inline-block;
|
| 34 |
+
font-size: 0.72em;
|
| 35 |
+
padding: 2px 8px;
|
| 36 |
+
border-radius: 999px;
|
| 37 |
+
margin-left: 8px;
|
| 38 |
+
vertical-align: middle;
|
| 39 |
+
}
|
| 40 |
+
.badge-dataset { background: #fff6ea; color: #b36b00; border: 1px solid #f0e68c; }
|
| 41 |
+
.badge-general { background: #eefcf3; color: #0a7f53; border: 1px solid #bfead4; }
|
| 42 |
+
.doc-box { background-color: #fffbe6; padding: 0.6em 0.8em; border-radius: 8px; border: 1px solid #f0e68c; margin-bottom: 0.5em; }
|
| 43 |
+
.doc-q { font-weight: 600; color: #333; }
|
| 44 |
+
.doc-a { color: #555; }
|
| 45 |
+
|
| 46 |
+
/* Make chat area scrollable and avoid hiding under input */
|
| 47 |
+
.chat-area {
|
| 48 |
+
max-height: 70vh;
|
| 49 |
+
overflow-y: auto;
|
| 50 |
+
padding-right: 8px;
|
| 51 |
+
padding-bottom: 120px; /* Space for input bar */
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
/* Fix the input container at the bottom */
|
| 55 |
+
.input-container {
|
| 56 |
+
position: fixed;
|
| 57 |
+
bottom: 0;
|
| 58 |
+
left: 0;
|
| 59 |
+
right: 0;
|
| 60 |
+
background-color: #ffffff;
|
| 61 |
+
padding: 1rem 2rem;
|
| 62 |
+
box-shadow: 0 -2px 10px rgba(0, 0, 0, 0.05);
|
| 63 |
+
z-index: 999;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
/* Optional: make buttons line up neatly */
|
| 67 |
+
.stButton button {
|
| 68 |
+
height: 2.5em;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
/* Hide Streamlit footer and hamburger for cleaner look */
|
| 72 |
+
#MainMenu {visibility: hidden;}
|
| 73 |
+
footer {visibility: hidden;}
|
| 74 |
+
header {visibility: hidden;}
|
| 75 |
+
</style>
|
| 76 |
+
""", unsafe_allow_html=True)
|
| 77 |
+
|
| 78 |
+
# --- HEADER ---
|
| 79 |
+
st.markdown('<div class="main-title">π¬ MoodMate</div>', unsafe_allow_html=True)
|
| 80 |
+
st.markdown('<div class="subtitle">Ask anything about personal, social, or business growth β powered by RAG + Gemini</div>', unsafe_allow_html=True)
|
| 81 |
+
|
| 82 |
+
add_vertical_space(2)
|
| 83 |
+
|
| 84 |
+
# --- LOAD PIPELINE ---
|
| 85 |
+
@st.cache_resource
|
| 86 |
+
def load_chain():
|
| 87 |
+
return build_rag_pipeline()
|
| 88 |
+
|
| 89 |
+
llm, retriever, rag_chain = load_chain()
|
| 90 |
+
|
| 91 |
+
# --- USER SETTINGS ---
|
| 92 |
+
st.markdown("### βοΈ Answer Selection Settings")
|
| 93 |
+
|
| 94 |
+
# Automatic vs Manual mode
|
| 95 |
+
auto_mode = st.checkbox("Automatic answer selection (default)", value=True)
|
| 96 |
+
|
| 97 |
+
# Manual answer type selection appears only if auto_mode is off
|
| 98 |
+
if not auto_mode:
|
| 99 |
+
answer_type = st.radio(
|
| 100 |
+
"Select answer type:",
|
| 101 |
+
("Dataset-Based Answer", "General Reasoning Answer"),
|
| 102 |
+
index=0
|
| 103 |
+
)
|
| 104 |
+
add_vertical_space(1)
|
| 105 |
+
|
| 106 |
+
# --- SESSION STATE MEMORY ---
|
| 107 |
+
if "chat_history" not in st.session_state:
|
| 108 |
+
st.session_state.chat_history = []
|
| 109 |
+
|
| 110 |
+
# Ensure input_box key exists so it persists across runs
|
| 111 |
+
if "input_box" not in st.session_state:
|
| 112 |
+
st.session_state.input_box = ""
|
| 113 |
+
|
| 114 |
+
# --- LAYOUT: chat area + input at bottom ---
|
| 115 |
+
chat_col = st.container()
|
| 116 |
+
|
| 117 |
+
# Render chat area (so it updates live on each run)
|
| 118 |
+
with chat_col:
|
| 119 |
+
st.markdown("## π¬ Conversation")
|
| 120 |
+
chat_area = st.container()
|
| 121 |
+
with chat_area:
|
| 122 |
+
# Render each turn in order
|
| 123 |
+
for i, turn in enumerate(st.session_state.chat_history):
|
| 124 |
+
# User bubble (left)
|
| 125 |
+
st.markdown(f'<div class="user-bubble">π§ You: {turn["user"]}</div>', unsafe_allow_html=True)
|
| 126 |
+
|
| 127 |
+
# Assistant bubble with subtle badge
|
| 128 |
+
typ = turn.get("type", "General Reasoning")
|
| 129 |
+
badge_html = (
|
| 130 |
+
f'<span class="meta-badge badge-dataset">Dataset-Based</span>'
|
| 131 |
+
if typ == "Dataset-Based Answer"
|
| 132 |
+
else f'<span class="meta-badge badge-general">General Reasoning</span>'
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
st.markdown(f'<div class="assistant-bubble">π€ Assistant: {turn["ai"]} {badge_html}</div>', unsafe_allow_html=True)
|
| 136 |
+
|
| 137 |
+
# If dataset-based and has docs, show small expander for docs
|
| 138 |
+
if turn.get("type") == "Dataset-Based Answer" and turn.get("docs"):
|
| 139 |
+
with st.expander(f"π Top Retrieved Documents for message {i+1}"):
|
| 140 |
+
for d in turn["docs"][:3]:
|
| 141 |
+
parts = d.page_content.split("\n")
|
| 142 |
+
q_text = parts[0].replace("Q: ", "") if len(parts) > 0 else ""
|
| 143 |
+
a_text = parts[1].replace("A: ", "") if len(parts) > 1 else ""
|
| 144 |
+
st.markdown(
|
| 145 |
+
f'<div class="doc-box"><div class="doc-q">Q: {q_text}</div><div class="doc-a">A: {a_text}</div></div>',
|
| 146 |
+
unsafe_allow_html=True
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# --- SEND CALLBACK LOGIC ---
|
| 150 |
+
def handle_send():
|
| 151 |
+
query = st.session_state.input_box.strip()
|
| 152 |
+
if not query:
|
| 153 |
+
st.warning("Please enter a message.")
|
| 154 |
+
return
|
| 155 |
+
|
| 156 |
+
with st.spinner("π Thinking and retrieving relevant information..."):
|
| 157 |
+
# --- Build unified chat history for contextual prompting ---
|
| 158 |
+
N_keep = 6 # keep last 6 turns
|
| 159 |
+
history_for_prompt = st.session_state.chat_history[-N_keep:]
|
| 160 |
+
full_prompt = ""
|
| 161 |
+
for turn in history_for_prompt:
|
| 162 |
+
full_prompt += f"User: {turn['user']}\nAI: {turn['ai']}\n"
|
| 163 |
+
full_prompt += f"User: {query}\nAI:"
|
| 164 |
+
|
| 165 |
+
rag_answer, general_answer, docs = "", "", []
|
| 166 |
+
|
| 167 |
+
# --- AUTO MODE ---
|
| 168 |
+
if auto_mode:
|
| 169 |
+
# Step 1: Try dataset-based (RAG) first
|
| 170 |
+
rag_result = rag_chain({"question": query})
|
| 171 |
+
rag_answer = rag_result.get("answer", "")
|
| 172 |
+
docs = rag_result.get("source_documents", [])
|
| 173 |
+
|
| 174 |
+
# Step 2: Evaluate RAG answer quality
|
| 175 |
+
# Automatically decide whether to show the dataset-based answer or fall back to general reasoning
|
| 176 |
+
# Explanation:
|
| 177 |
+
# - any(kw in rag_answer.lower() for kw in fallback_keywords): checks if any "bad" keyword appears
|
| 178 |
+
# - len(rag_answer.strip()) < 50: checks if the dataset-based answer is too short (likely low quality)
|
| 179 |
+
# - not (...): inverts the condition β we show dataset answer only if itβs *good enough*
|
| 180 |
+
fallback_keywords = ["cannot answer", "no information", "based on the context", "i'm sorry"]
|
| 181 |
+
rag_too_short = len(rag_answer.strip()) < 50
|
| 182 |
+
rag_weak = any(kw in rag_answer.lower() for kw in fallback_keywords)
|
| 183 |
+
|
| 184 |
+
if rag_weak or rag_too_short:
|
| 185 |
+
# Step 3: Fallback to general reasoning ONLY if RAG is weak
|
| 186 |
+
general_response_obj = llm.invoke(full_prompt)
|
| 187 |
+
general_answer = getattr(general_response_obj, "content", str(general_response_obj))
|
| 188 |
+
chosen_answer = general_answer
|
| 189 |
+
chosen_type = "General Reasoning"
|
| 190 |
+
else:
|
| 191 |
+
chosen_answer = rag_answer
|
| 192 |
+
chosen_type = "Dataset-Based Answer"
|
| 193 |
+
|
| 194 |
+
# --- MANUAL MODE ---
|
| 195 |
+
else:
|
| 196 |
+
if answer_type == "Dataset-Based Answer":
|
| 197 |
+
rag_result = rag_chain({"question": query})
|
| 198 |
+
rag_answer = rag_result.get("answer", "")
|
| 199 |
+
docs = rag_result.get("source_documents", [])
|
| 200 |
+
chosen_answer = rag_answer
|
| 201 |
+
chosen_type = "Dataset-Based Answer"
|
| 202 |
+
else:
|
| 203 |
+
general_response_obj = llm.invoke(full_prompt)
|
| 204 |
+
general_answer = getattr(general_response_obj, "content", str(general_response_obj))
|
| 205 |
+
chosen_answer = general_answer
|
| 206 |
+
chosen_type = "General Reasoning"
|
| 207 |
+
|
| 208 |
+
# --- Append to unified chat history ---
|
| 209 |
+
st.session_state.chat_history.append({
|
| 210 |
+
"user": query,
|
| 211 |
+
"ai": chosen_answer,
|
| 212 |
+
"type": chosen_type,
|
| 213 |
+
"docs": docs if chosen_type == "Dataset-Based Answer" else None
|
| 214 |
+
})
|
| 215 |
+
|
| 216 |
+
# β
Clear input after sending
|
| 217 |
+
st.session_state.input_box = ""
|
| 218 |
+
|
| 219 |
+
# --- INPUT AREA (stays at bottom) ---
|
| 220 |
+
# --- FIXED INPUT BAR ---
|
| 221 |
+
st.markdown('<div class="input-container">', unsafe_allow_html=True)
|
| 222 |
+
|
| 223 |
+
query = st.text_input(
|
| 224 |
+
"π Type your message here...",
|
| 225 |
+
key="input_box",
|
| 226 |
+
placeholder="e.g. How can I improve my communication skills?",
|
| 227 |
+
label_visibility="collapsed"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
col1, col2 = st.columns([0.2, 0.8])
|
| 231 |
+
with col1:
|
| 232 |
+
st.button("Send π¬", key="send_button", on_click=handle_send)
|
| 233 |
+
with col2:
|
| 234 |
+
st.button("π§Ή Clear Chat", key="clear_button", help="Clears conversation history (not persistent).", on_click=lambda: (
|
| 235 |
+
st.session_state.chat_history.clear(),
|
| 236 |
+
st.session_state.update({"input_box": ""}),
|
| 237 |
+
st.rerun()
|
| 238 |
+
))
|
| 239 |
+
|
| 240 |
st.markdown('</div>', unsafe_allow_html=True)
|