MetaQu's picture
Update app.py
c346fbc verified
raw
history blame
3.96 kB
import gradio as gr
from transformers import pipeline
from PIL import Image, ExifTags
import numpy as np
import cv2
# ----------------------------
# MODEL
# ----------------------------
try:
hf_detector = pipeline("image-classification", model="umm-maybe/AI-image-detector")
except Exception as e:
hf_detector = None
print("HF AI-detector gagal dimuat:", e)
try:
general_model = pipeline("image-classification", model="google/vit-base-patch16-224")
except Exception as e:
general_model = None
print("General classifier gagal dimuat:", e)
# ----------------------------
# ANALISIS LOKAL
# ----------------------------
def calculate_blur(image):
gray = np.array(image.convert("L"))
return cv2.Laplacian(gray, cv2.CV_64F).var()
def calculate_noise(image):
gray = np.array(image.convert("L"), dtype=np.float32)
noise_std = np.std(gray - np.mean(gray))
return noise_std
def has_camera_exif(image):
try:
exif = image._getexif()
if exif:
for tag, value in exif.items():
decoded = ExifTags.TAGS.get(tag, tag)
if decoded in ["Make", "Model"]:
return True
except:
return False
return False
# ----------------------------
# DETEKSI HYBRID DENGAN PERSENTASE
# ----------------------------
def detect_image(image):
hf_score = 0
general_score = 0
local_score = 0
# -------- HF AI-detector --------
hf_label, hf_conf = "N/A", 0
if hf_detector:
try:
result = hf_detector(image)
hf_label = result[0]['label']
hf_conf = result[0]['score'] * 100
# Jika label mengandung tanda AI β†’ skor AI = confidence
if any(x in hf_label.lower() for x in ["fake", "ai", "artificial"]):
hf_score = hf_conf
except:
hf_score = 0
# -------- General model --------
general_label, general_conf = "N/A", 0
if general_model:
try:
result2 = general_model(image)
general_label = result2[0]['label']
general_conf = result2[0]['score'] * 100
if any(x in general_label.lower() for x in ["anime","cartoon","illustration","maya","3d"]):
general_score = general_conf * 0.7 # dikurangi bobot karena cadangan
except:
general_score = 0
# -------- Analisis lokal --------
blur_score = calculate_blur(image)
noise_score = calculate_noise(image)
exif_present = has_camera_exif(image)
if blur_score < 100 or noise_score < 10:
local_score += 50
if not exif_present:
local_score += 10
# -------- Weighted Score --------
total_ai_score = hf_score*0.7 + general_score*0.2 + local_score*0.1
total_ai_score = min(max(total_ai_score, 0), 100) # clamp 0–100
total_real_score = 100 - total_ai_score
# -------- Output --------
if total_ai_score == 100:
final_text = "πŸ€– Gambar ini hasil AI"
elif total_real_score == 100:
final_text = "βœ… Gambar ini asli"
else:
final_text = f"πŸ–ΌοΈ {total_ai_score:.2f}% AI / {total_real_score:.2f}% Asli"
output_lines = [
f"### Hasil Deteksi:\n{final_text}",
f"HF AI-detector: {hf_label} ({hf_conf:.2f}%)",
f"General Model: {general_label} ({general_conf:.2f}%)",
f"Blur Score: {blur_score:.2f}",
f"Noise Score: {noise_score:.2f}",
f"Metadata Kamera: {'Ada' if exif_present else 'Tidak Ada'}"
]
return "\n".join(output_lines)
# ----------------------------
# Gradio Interface
# ----------------------------
iface = gr.Interface(
fn=detect_image,
inputs=gr.Image(type="pil"),
outputs="markdown",
title="Hybrid AI vs Foto Asli Detector (Gratis)",
description="Unggah gambar, sistem akan mendeteksi persentase AI dan persentase asli. Tidak ada kategori tidak pasti."
)
if __name__ == "__main__":
iface.launch()