Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| from PIL import Image, ExifTags | |
| import numpy as np | |
| import cv2 | |
| # ---------------------------- | |
| # MODEL | |
| # ---------------------------- | |
| try: | |
| hf_detector = pipeline("image-classification", model="umm-maybe/AI-image-detector") | |
| except Exception as e: | |
| hf_detector = None | |
| print("HF AI-detector gagal dimuat:", e) | |
| try: | |
| general_model = pipeline("image-classification", model="google/vit-base-patch16-224") | |
| except Exception as e: | |
| general_model = None | |
| print("General classifier gagal dimuat:", e) | |
| # ---------------------------- | |
| # ANALISIS LOKAL | |
| # ---------------------------- | |
| def calculate_blur(image): | |
| gray = np.array(image.convert("L")) | |
| return cv2.Laplacian(gray, cv2.CV_64F).var() | |
| def calculate_noise(image): | |
| gray = np.array(image.convert("L"), dtype=np.float32) | |
| noise_std = np.std(gray - np.mean(gray)) | |
| return noise_std | |
| def has_camera_exif(image): | |
| try: | |
| exif = image._getexif() | |
| if exif: | |
| for tag, value in exif.items(): | |
| decoded = ExifTags.TAGS.get(tag, tag) | |
| if decoded in ["Make", "Model"]: | |
| return True | |
| except: | |
| return False | |
| return False | |
| # ---------------------------- | |
| # DETEKSI HYBRID DENGAN PERSENTASE | |
| # ---------------------------- | |
| def detect_image(image): | |
| hf_score = 0 | |
| general_score = 0 | |
| local_score = 0 | |
| # -------- HF AI-detector -------- | |
| hf_label, hf_conf = "N/A", 0 | |
| if hf_detector: | |
| try: | |
| result = hf_detector(image) | |
| hf_label = result[0]['label'] | |
| hf_conf = result[0]['score'] * 100 | |
| # Jika label mengandung tanda AI β skor AI = confidence | |
| if any(x in hf_label.lower() for x in ["fake", "ai", "artificial"]): | |
| hf_score = hf_conf | |
| except: | |
| hf_score = 0 | |
| # -------- General model -------- | |
| general_label, general_conf = "N/A", 0 | |
| if general_model: | |
| try: | |
| result2 = general_model(image) | |
| general_label = result2[0]['label'] | |
| general_conf = result2[0]['score'] * 100 | |
| if any(x in general_label.lower() for x in ["anime","cartoon","illustration","maya","3d"]): | |
| general_score = general_conf * 0.7 # dikurangi bobot karena cadangan | |
| except: | |
| general_score = 0 | |
| # -------- Analisis lokal -------- | |
| blur_score = calculate_blur(image) | |
| noise_score = calculate_noise(image) | |
| exif_present = has_camera_exif(image) | |
| if blur_score < 100 or noise_score < 10: | |
| local_score += 50 | |
| if not exif_present: | |
| local_score += 10 | |
| # -------- Weighted Score -------- | |
| total_ai_score = hf_score*0.7 + general_score*0.2 + local_score*0.1 | |
| total_ai_score = min(max(total_ai_score, 0), 100) # clamp 0β100 | |
| total_real_score = 100 - total_ai_score | |
| # -------- Output -------- | |
| if total_ai_score == 100: | |
| final_text = "π€ Gambar ini hasil AI" | |
| elif total_real_score == 100: | |
| final_text = "β Gambar ini asli" | |
| else: | |
| final_text = f"πΌοΈ {total_ai_score:.2f}% AI / {total_real_score:.2f}% Asli" | |
| output_lines = [ | |
| f"### Hasil Deteksi:\n{final_text}", | |
| f"HF AI-detector: {hf_label} ({hf_conf:.2f}%)", | |
| f"General Model: {general_label} ({general_conf:.2f}%)", | |
| f"Blur Score: {blur_score:.2f}", | |
| f"Noise Score: {noise_score:.2f}", | |
| f"Metadata Kamera: {'Ada' if exif_present else 'Tidak Ada'}" | |
| ] | |
| return "\n".join(output_lines) | |
| # ---------------------------- | |
| # Gradio Interface | |
| # ---------------------------- | |
| iface = gr.Interface( | |
| fn=detect_image, | |
| inputs=gr.Image(type="pil"), | |
| outputs="markdown", | |
| title="Hybrid AI vs Foto Asli Detector (Gratis)", | |
| description="Unggah gambar, sistem akan mendeteksi persentase AI dan persentase asli. Tidak ada kategori tidak pasti." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |