|
import sys |
|
|
|
import torch |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
|
|
from config import config |
|
from .japanese import text2sep_kata |
|
|
|
LOCAL_PATH = "./bert/deberta-v2-large-japanese" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH) |
|
|
|
models = dict() |
|
|
|
|
|
def get_bert_feature(text, word2ph, device=config.bert_gen_config.device): |
|
sep_text, _, _ = text2sep_kata(text) |
|
sep_tokens = [tokenizer.tokenize(t) for t in sep_text] |
|
sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens] |
|
sep_ids = [2] + [item for sublist in sep_ids for item in sublist] + [3] |
|
return get_bert_feature_with_token(sep_ids, word2ph, device) |
|
|
|
|
|
def get_bert_feature_with_token(tokens, word2ph, device=config.bert_gen_config.device): |
|
if ( |
|
sys.platform == "darwin" |
|
and torch.backends.mps.is_available() |
|
and device == "cpu" |
|
): |
|
device = "mps" |
|
if not device: |
|
device = "cuda" |
|
if device not in models.keys(): |
|
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device) |
|
with torch.no_grad(): |
|
inputs = torch.tensor(tokens).to(device).unsqueeze(0) |
|
token_type_ids = torch.zeros_like(inputs).to(device) |
|
attention_mask = torch.ones_like(inputs).to(device) |
|
inputs = { |
|
"input_ids": inputs, |
|
"token_type_ids": token_type_ids, |
|
"attention_mask": attention_mask, |
|
} |
|
|
|
|
|
|
|
res = models[device](**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() |
|
assert inputs["input_ids"].shape[-1] == len(word2ph) |
|
word2phone = word2ph |
|
phone_level_feature = [] |
|
for i in range(len(word2phone)): |
|
repeat_feature = res[i].repeat(word2phone[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|